Rutgers University School of Engineering

Fall 2022

332:231 – Digital Logic Design

Sophocles J. Orfanidis ECE Department orfanidi@rutgers.edu

Unit 4 – decoders, encoders, multiplexers, demultiplexers

Course Topics

- 1. Introduction to DLD, Verilog HDL, MATLAB/Simulink
- 2. Number systems
- 3. Analysis and synthesis of combinational circuits
- 4. Decoders/encoders, multiplexers/demultiplexers
- 5. Arithmetic systems, comparators, adders, multipliers
- 6. Sequential circuits, latches, flip-flops
- 7. Registers, shift registers, counters, LFSRs
- 8. Finite state machines, analysis and synthesis

Text: J. F. Wakerly, *Digital Design Principles and Practices*, 5/e, Pearson, 2018 additional references on Canvas Files > References

This unit has two parts:

1 .Digital design practices (Wakerly, Ch. 4), provides an overview of some conventions used in practice, such as, block diagrams, gate symbols, signal naming conventions, using active-high vs. active-low levels, bubble-to-bubble designs, layouts and schematics, circuit timing, timing diagrams, and propagation delays.

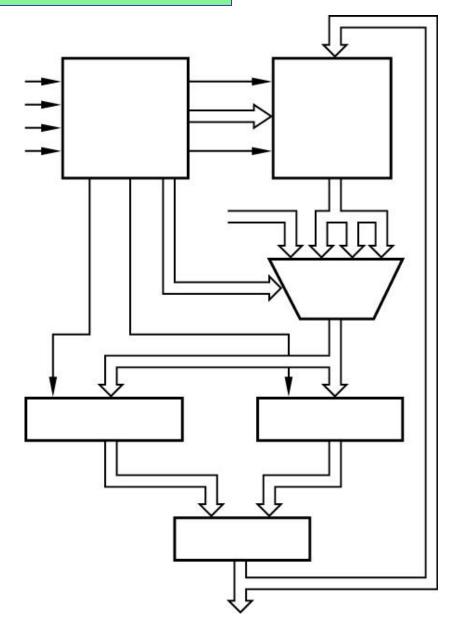
2. Basic combinational components (Wakerly, Ch. 6 & 7), that are commonly used in practice, such as, read-only-memories (ROMs), decoders, encoders, three-state buffers, priority encoders, multiplexers and demultiplexers, realizing arbitrary combinational functions with ROMs, decoders, and multiplexers.

Comparators are discussed in Sect. 7-4, and in unit-5 of lecture notes.

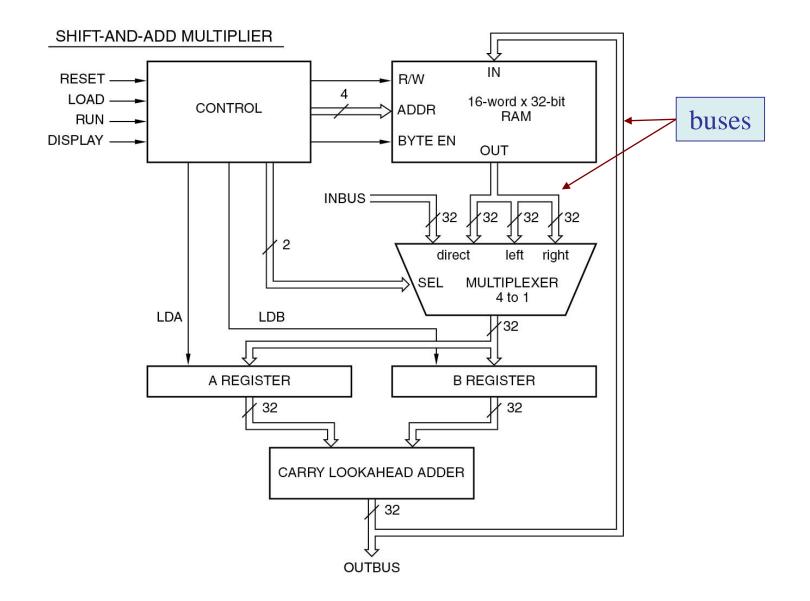
Unit-4 Contents:

Part 1 – Digital design practices

- 1. Block diagrams, gate symbols
- 2. Signal names, active-high, active-low levels
- 3. Bubble-to-bubble logic design
- 4. Layouts and schematics
- 5. Circuit timing, timing diagrams, propagation delays
- Part 2 Basic combinational components
 - 6. ROMs
 - 7. Decoders
 - 8. Realizing arbitrary combinational functions with decoders
 - 9. Encoders
 - 10. Three-state buffers

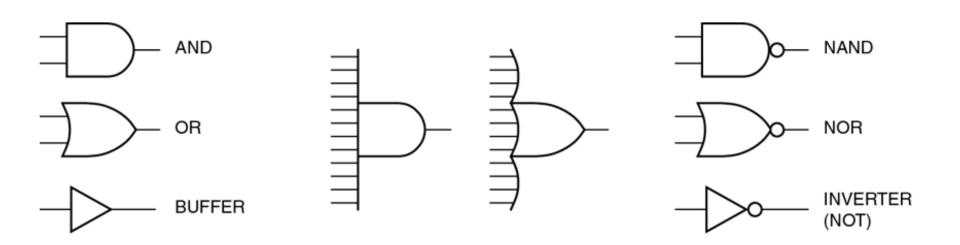

Contents, continued:

- 11. Priority encoders
- 12. Multiplexers
- 13. Realizing arbitrary combinational functions with multiplexers
- 14. Demultiplexers
- 15. Realizing multiplexers and demultiplexers with decoders


Part 1 – Digital Design Practices

(Wakerly, Ch.4)

block diagram example


block diagram example

gate symbols

IEEE STANDARD LOGIC SYMBOLS

Together with the American National Standards Institute (ANSI), the Institute of Electrical and Electronic Engineers (IEEE) has developed a standard set of logic symbols. The most recent revision of the standard is ANSI/IEEE Std 91-1984, *IEEE Standard Graphic Symbols for Logic Functions*. The standard allows both rectangular- and distinctive-shape symbols for logic gates. We have been using and will continue to use the distinctive-shape symbols throughout this book, but the rectangular-shape symbols are described in Appendix A.

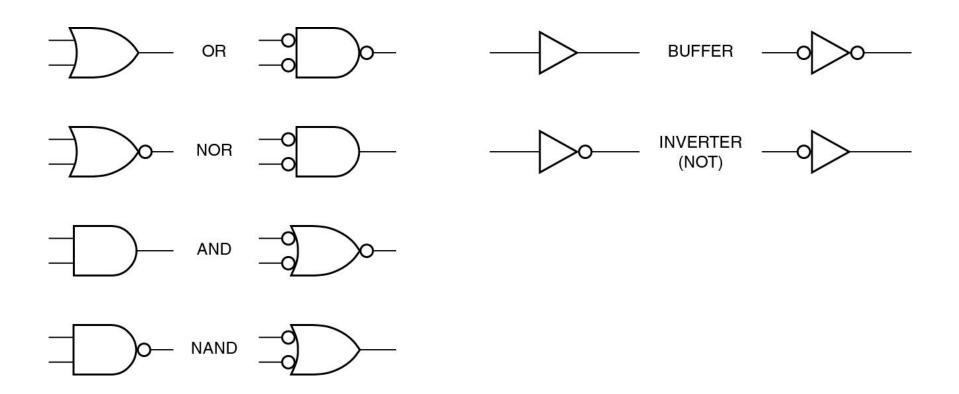


Figure 4-4. Equivalent gate symbols under the De Morgan theorem

signal names, active-high, active-low levels

Active Low	Active High
READY-	READY+
ERROR.L	ERROR.H
ADDR15(L)	ADDR15(H)
RESET*	RESET
ENABLE-	ENABLE
-GO	GO
/RECEIVE	RECEIVE
TRANSMIT_L	TRANSMIT

Table 4-1. Each line shows a different naming convention for active levels

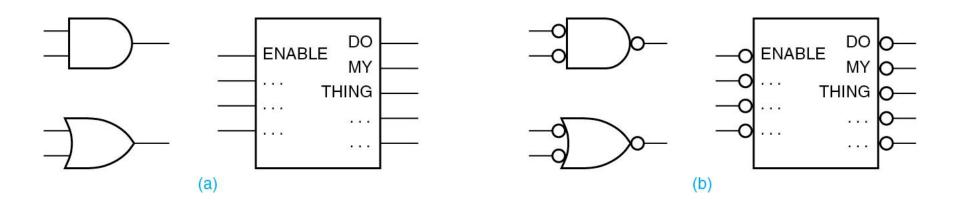


Figure 4-5. Logic symbols.

(a) active-high AND, OR, and a larger-scale logic element

(b) the same elements with active-low inputs and outputs

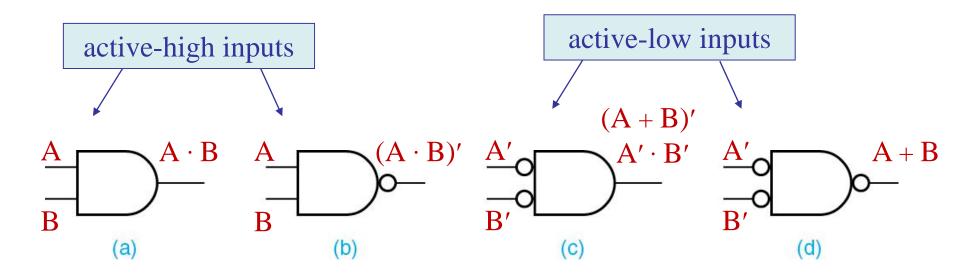


Figure 4-6. Four ways of obtaining an AND function.

- (a) AND gate;
- (b) NAND gate;
- (c) NOR gate;
- (d) OR gate

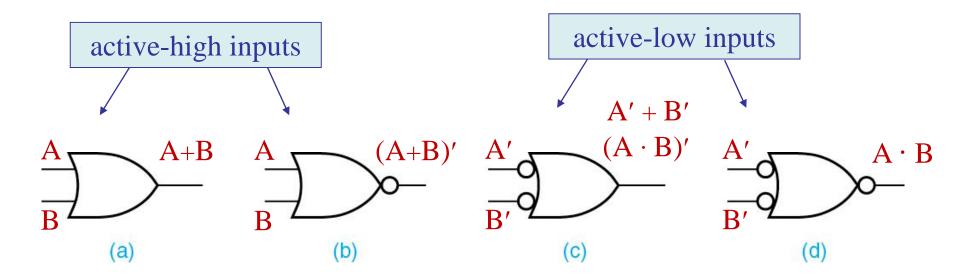


Figure 4-6. Four ways of obtaining an OR function.
(a) OR gate;
(b) NOR gate;
(c) NAND gate;
(d) AND gate

Figure 4-8. Alternative symbols.

(a, b) Inverters

(c, d) Noninverting buffers

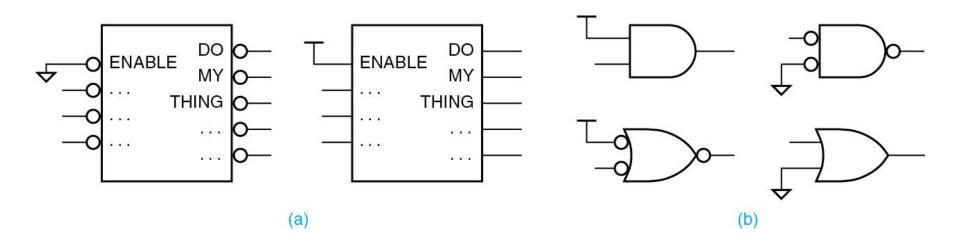


Figure 4-9. Constant 0 and 1 inputs for unused inputs.(a) with larger-scale logic element(b) with individual gates

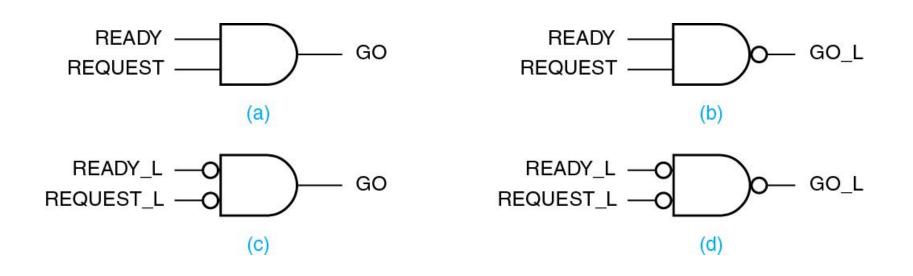


Figure 4-10. Many ways to GO.

(a) Active-high inputs and output

(b) Active-high inputs, active-low output

(c) Active-low inputs, active-high output

(d) Active-low inputs and output

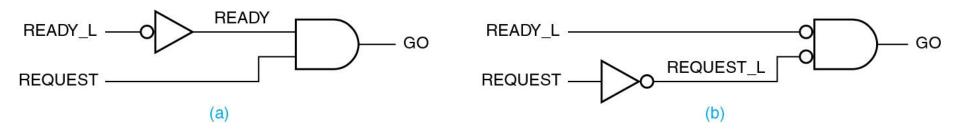


Figure 4-1.1 Two more ways to GO, with mixed input levels.(a) with an AND gate(b) with a NOR gate

bubble-to-bubble logic design

BUBBLE-TO-The following rules are useful for performing bubble-to-bubble logic design: BUBBLE LOGIC The signal name on a device's output should have the same active level as the DESIGN RULES device's output pin, that is, active-low if the device symbol has an inversion bubble on the output pin, active-high if not. If the active level of an input signal is the same as that of the input pin to which it is connected, then the logic function inside the symbolic outline is activated when the signal is asserted. This is the most common case in a logic diagram. If the active level of an input signal is the opposite of that of the input pin to • which it is connected, then the logic function inside the symbolic outline is activated when the signal is negated. This case should be avoided whenever possible because it forces us to keep track mentally of a logical negation to understand the circuit.

bubble-to-bubble logic design

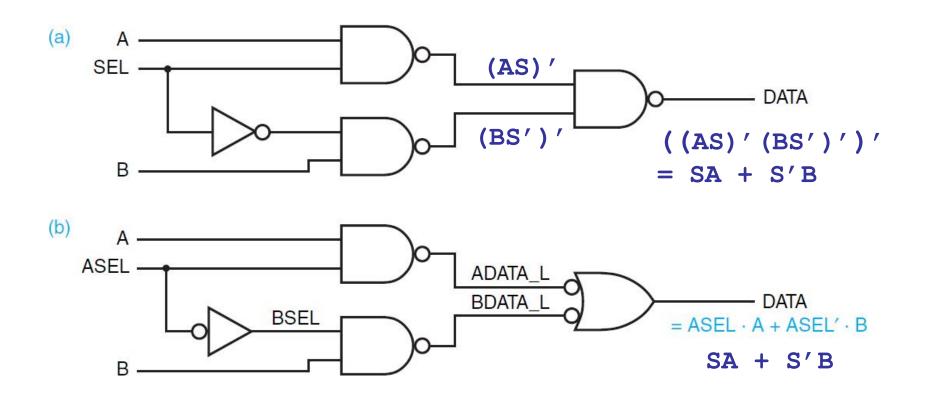


Figure 4-12. Two-Input Multiplexer.(a) cryptic logic diagram(b) proper logic diagram with named active levels

bubble-to-bubble logic design

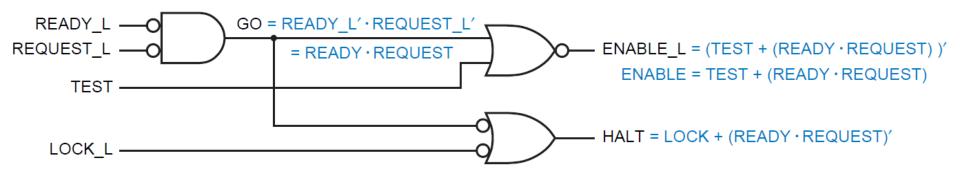


Figure 4-13. Another properly drawn logic diagram

READY = (READY_L)' REQUEST = (REQUEST_L)' LOCK = (LOCK_L)' ENABLE = (ENABLE_L)'

layouts and schematics

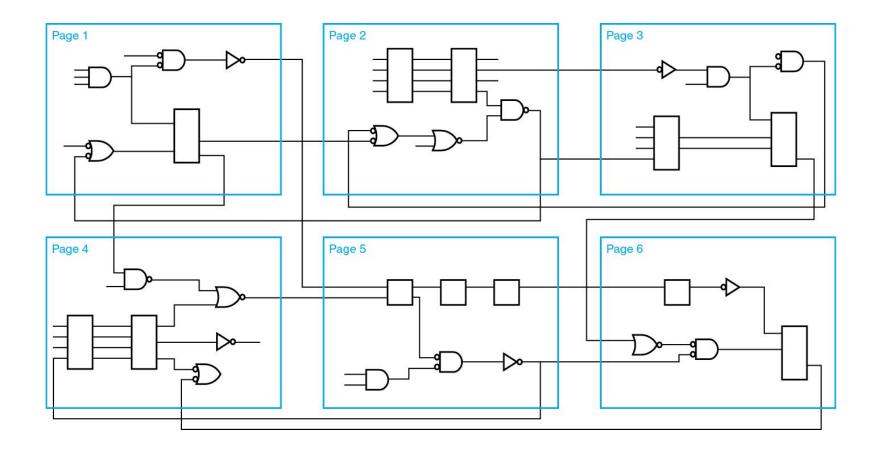


Figure 4-15. Flat schematic structure

layouts and schematics

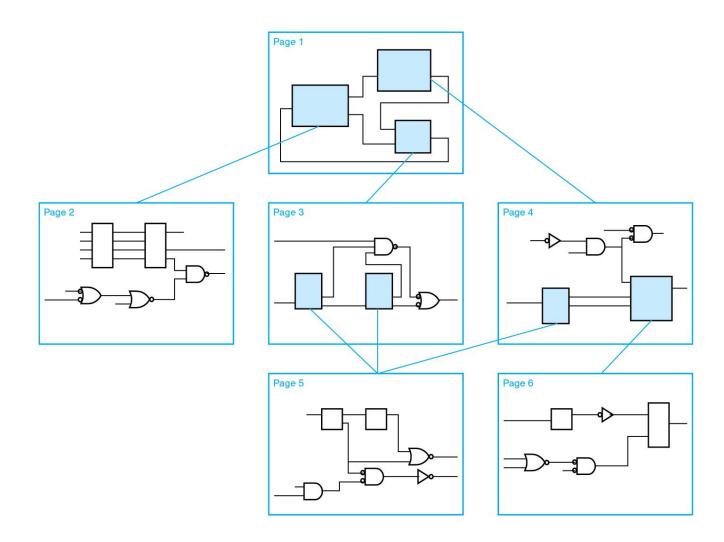
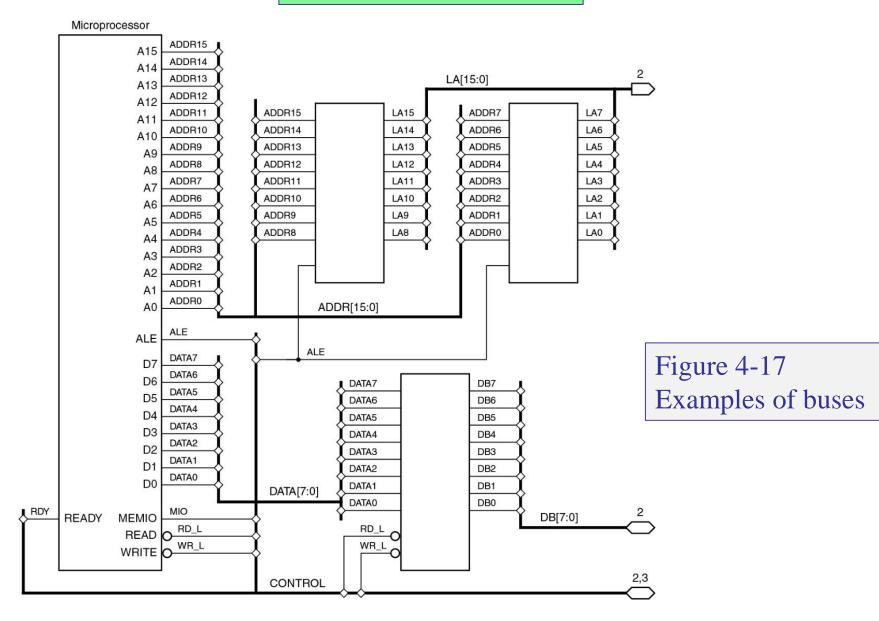



Figure 4-16. Hierarchical schematic structure

layouts and schematics

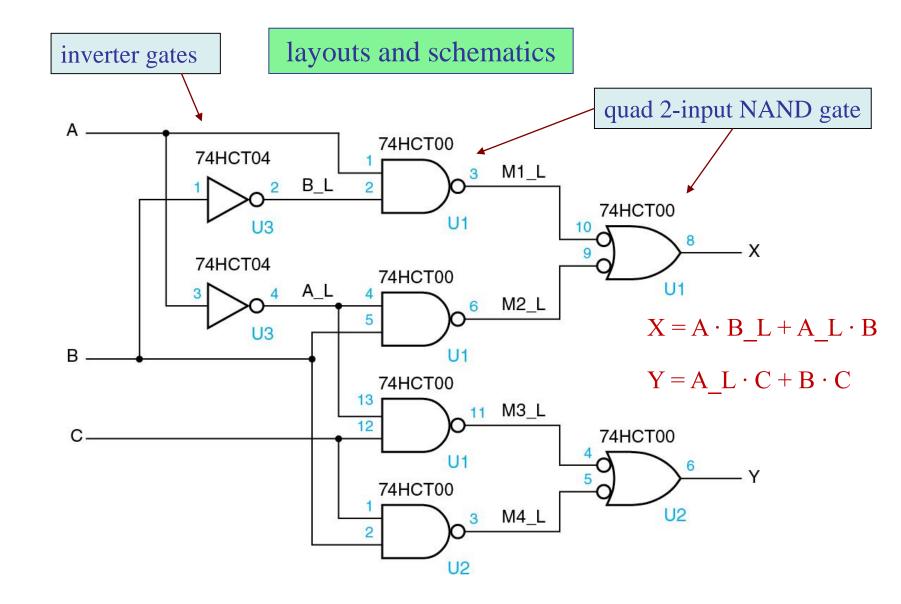
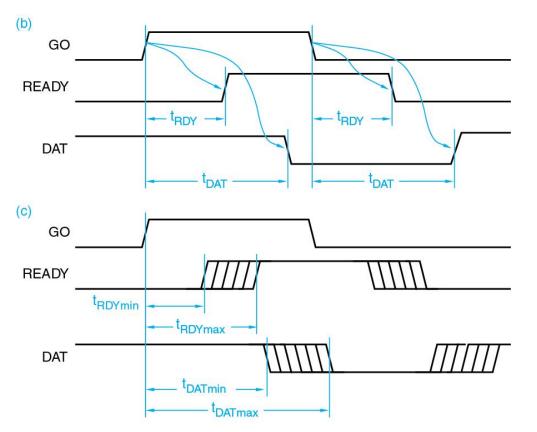
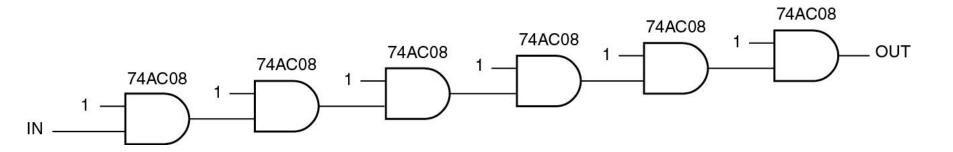



Figure 4-18. Schematic diagram for a circuit using several SSI parts

circuit timing

Figure 4-19. Timing diagrams for a combinational circuit.(a) Block diagram of circuit(b) Causality, propagation delay(c) Minimum and maximum delays

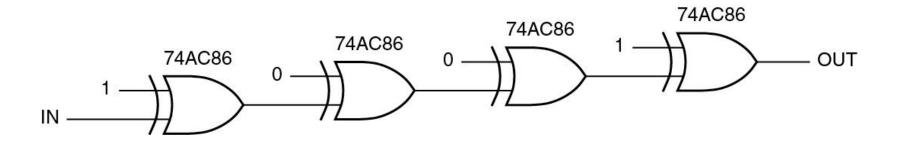
Table 4-2. Propagation delay in nanoseconds of selected CMOS SSI parts



Part Number		74AC @ 5.0V				74	HC @ 2.	.ov	74HC @ 4.5V			
		Minimum		Maximum		Тур.	Maximum		тур.	Maximum		
	Function	t _{pLH}	t _{pHL}	t _{pLH}	t _{pHL}	25°C _{t_{pd}}	25°C	85°C t _{pd}	25°C	25°C t _{pd}	85°C t _{pd}	
'00	2-input NAND	1.9	1.9	6.6	6.6	45	90	115	9	18	23	
'02	2-input NOR	3.0	3.0	10.4	10.4	45	90	115	9	18	23	
'04	Inverter	1.7	1.7	5.9	5.9	45	95	120	9	19	24	
'08	2-input AND	1.0	1.0	8.5	7.5	50	100	125	10	20	25	
'10	3-input NAND	1.0	1.0	8.0	6.5	35	95	120	10	19	24	
'11	3-input AND	1.0	1.0	8.5	7.5	35	100	125	10	20	25	
' <mark>2</mark> 0	4-input NAND	1.5	1.5	8.0	7.0	45	110	140	14	22	28	
'21	4-input AND	1.5	1.5	6.5	7.0	44	110	140	14	22	28	
'27	3-input NOR	1.5	1.5	8.5	8.5	35	90	115	10	18	23	
'30	8-input NAND	1.0	1.0	9.5	9.5	41	130	165	15	26	33	
'32	2-input OR	1.5	1.0	10.0	9.0	50	100	125	10	20	25	
'86	2-input XOR	1.0	1.0	9.0	9.5	40	100	125	12	20	25	

circuit timing					74AC @ 5.0V		74HC @ 2.0V		74HC @ 4.5V			
					Min.	Max.	Тур.	Maximum		Тур.	Maximum	
			-	-			25°C	25°C	85°C	25°C	25°C	85°C
Table 4-3. Propagation delay	Part	Function	From	То	t _{pd}							
in nanoseconds of selected	'138	38 3-to-8 binary decoder	any select	output	2.8	10.0	67	180	225	18	36	45
			G2A, G2B	output	2.6	9.1	66	155	195	18	31	39
CMOS MSI parts			G1	output	2.8	10.0	66	155	195	18	31	39
	'139 dual 2-to-4 binary decoder	any select	output	2.8	9.5	47	175	220	14	35	44	
			enable	output	2.8	9.5	39	175	220	11	35	44
	'148	8-to-3 priority encoder	11-17	A0-A2			69	180	225	23	36	45
			10-17	EO			60	150	190	20	30	38
			10-17	GS			75	190	240	25	38	48
			EI	A0-A2			78	195	245	26	39	49
			EI	GS			57	145	180	19	29	36
			EI	EO			66	165	205	22	33	41
		8-to-1 multiplexer	any select	Y	4.7	16.5	94	250	312	30	50	63
		munipiener	any select	Y	5.1	17.8	94	250	312	30	50	63
			any data	Y	3.5	12.3	74	195	244	23	39	49
			any data	Y	3.8	13.5	74	195	244	23	39	49
			enable	Y	3.1	11.1	49	127	159	15	25	32
			enable	Y	3.5	12.3	49	127	159	15	25	32
	'157	2-to-4 multiplexer	select	output	3.8	13.2		145	180	12	29	36
			any data	output	2.2	7.7		125	155	10	25	31
			enable	output	3.6	12.3		135	170	11	27	34
	'280	9-input parity circuit	any input	EVEN	5.2	18.2		200	250	17	40	50
			any input	ODD	5.4	19.1		200	250	17	40	50
	'283	4-bit adder	CO	any Si	4.5	16.0		230	290	19	46	58
			any Ai, Bi	any Si	4.7	16.5		210	265	18	42	53
			any input	C4	4.5	16.0		195	245	16	39	49
	'682	8-bit comp.	any input	output			130	275	344	26	55	69

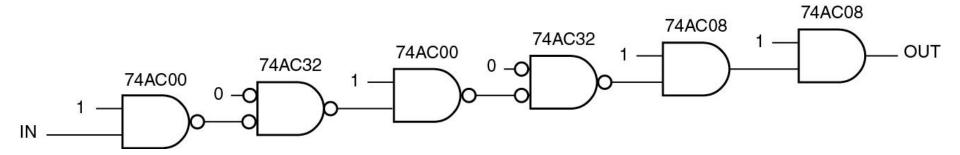
circuit timing


Figure X4.11

4.11 Determine the exact maximum propagation delay from IN to OUT of the circuit fragment in **Figure X4.11** [I] for both LOW-to-HIGH and HIGH-to-LOW transitions, using the timing information given in **Table 4-2** [I]. Repeat, using a single worst-case delay number for each gate, and compare and comment on your results.

solution

All transitions go in the same direction. Thus, Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and $t_{pLH} = 6t_{pLH(AC08)}$ Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. For adopters of Digital Design Principles and Practices. © 2018 Pearson. DO NOT COPY. F


4.15 Estimate the *minimum* propagation delay from IN to OUT for the circuit shown in **Figure X4.15** . Justify your answer.

solution

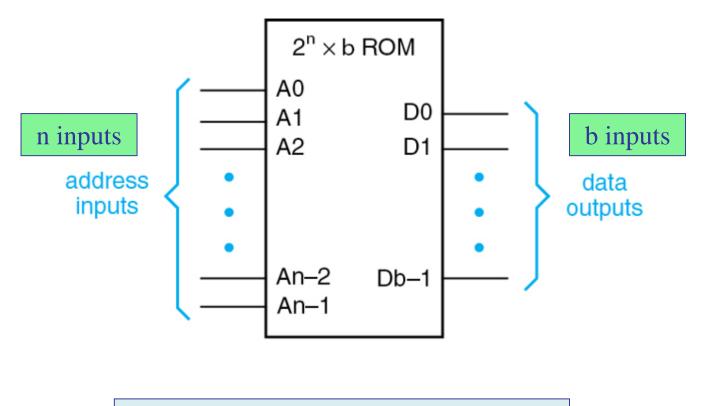
The minimum delay through one 'AC86 is listed in Table 4–2 as 1.0 ns. Therefore, we estimate the minimum delay through the four gates at 4 ns.

circuit timing

Figure X4.18

4.18 Estimate the *minimum* propagation delay from IN to OUT for the circuit shown in Figure X4.18 []. Justify your answer.

solution


The minimum delays through the 'AC00, 'AC08, and 'AC32 are listed in Table 4–2 as 1.9, 1.0, and 1.5/1.0 (LH/HL) respectively. So, the total minimum delay will be 1.9+1.5/1.0+1.9+1.5/1.0+1.0+1.0 depending on the transition directions through the 'AC32s. However, since there is exactly one inversion between the 'AC32s, the transitions will be in opposite directions, so one will have a minimum delay of 1.5 ns and the other 1.0 ns. The total minimum delay is therefore 1.9+1.5+1.9+1.0+1.0=8.3 ns.

Part 2 – Basic Combinational Components (Wakerly, Ch. 6 & 7)

Read-only-memories (ROMs), and realizations of combinational functions Decoders Realizing arbitrary combinational functions with decoders Encoders Three-state buffers Priority encoders Multiplexers Realizing arbitrary combinational functions with multiplexers Demultiplexers Realizing multiplexers and demultiplexers with decoders

A read-only-memory (ROM) is a combinational circuit with n address inputs and b data outputs, so that there are 2^{n} input bit patterns.

Wakerly Figure 6-14. $2^n x b ROM$

A ROM may be thought of as a "look-up" table for storing the truth table of an arbitrary combinational circuit that has n inputs and b outputs.

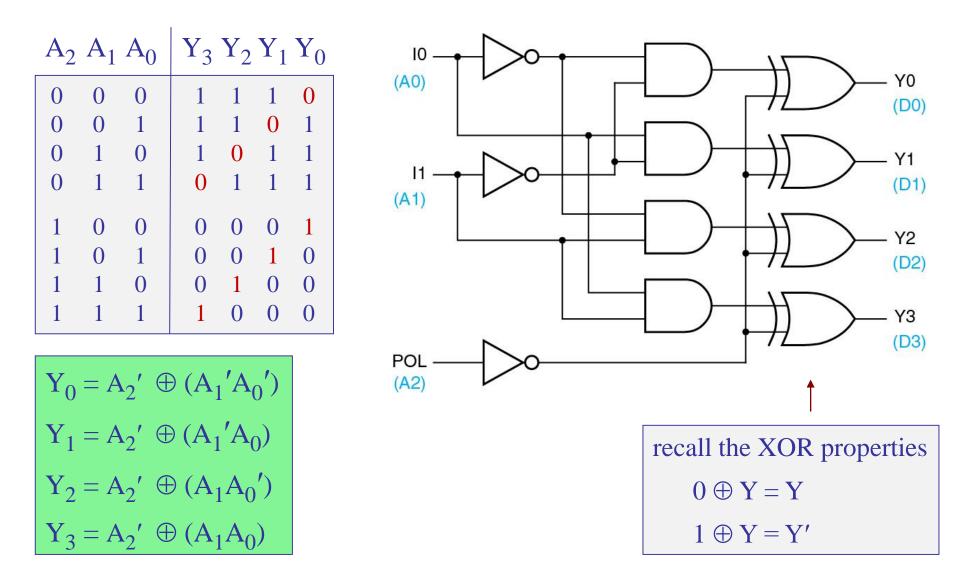
Wakerly Table 6-1. For example, the truth table of a 2-to-4 decoder with an additional output-polarity control input, shown below, can be stored in a $2^3 \times 4$ or $8 \times 4 \times 10^{-4}$ control input, shown

POL I_1 I_0 D_3 D_2 D_1 D_0

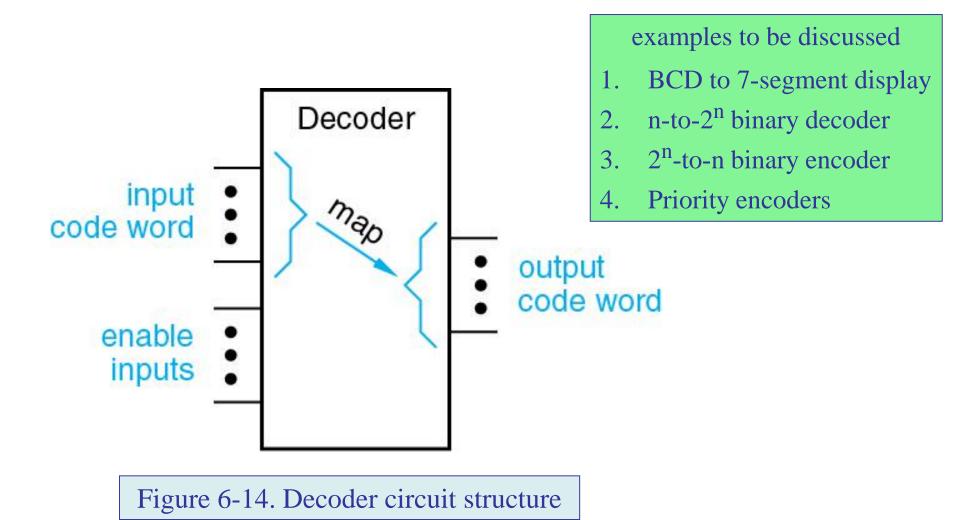
 I0
 A0
 D0
 Y0

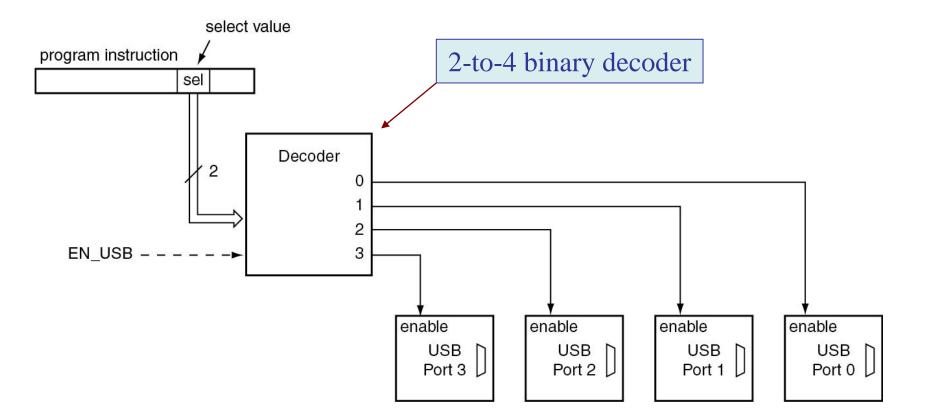
 I1
 A1
 D1
 Y1

 POL
 A2
 D3
 Y2


 8×4 ROM

gate-level implementation -


Wakerly Fig. 6-3. Gate-level implementation of a 2-to-4 decoder with output-polarity control (see p.54 for derivations)


A decoder detects a particular code or bit pattern on its input and passes (decodes) that information to its output.

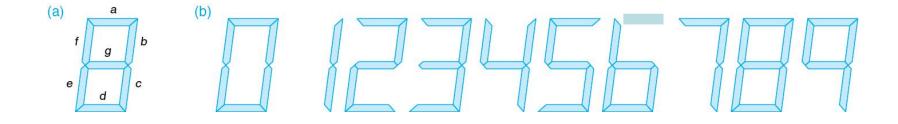
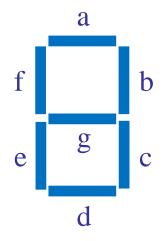
Some decoder application examples

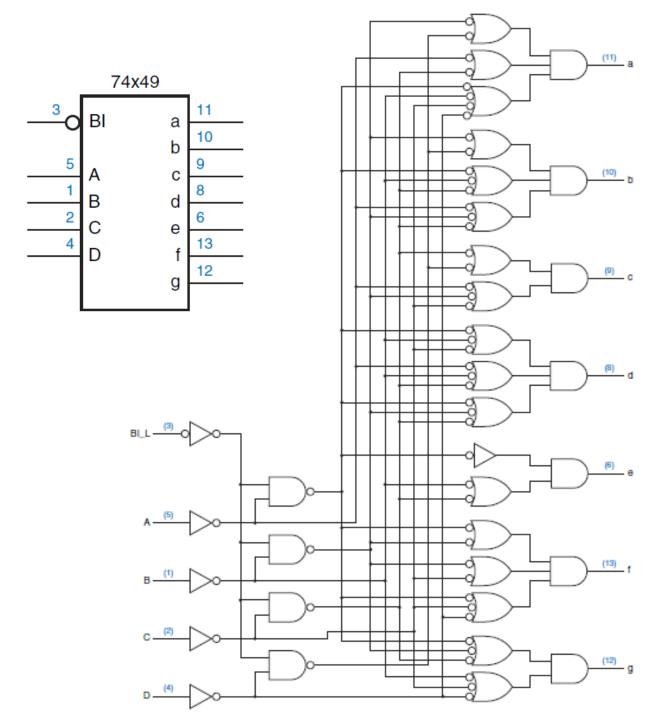
Decoders

Wakerly / Fig.6-12 – Typical decoder application in a computer

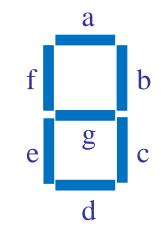
BCD to seven-segment LED display decoder

binary-coded decimal light-emitting diode

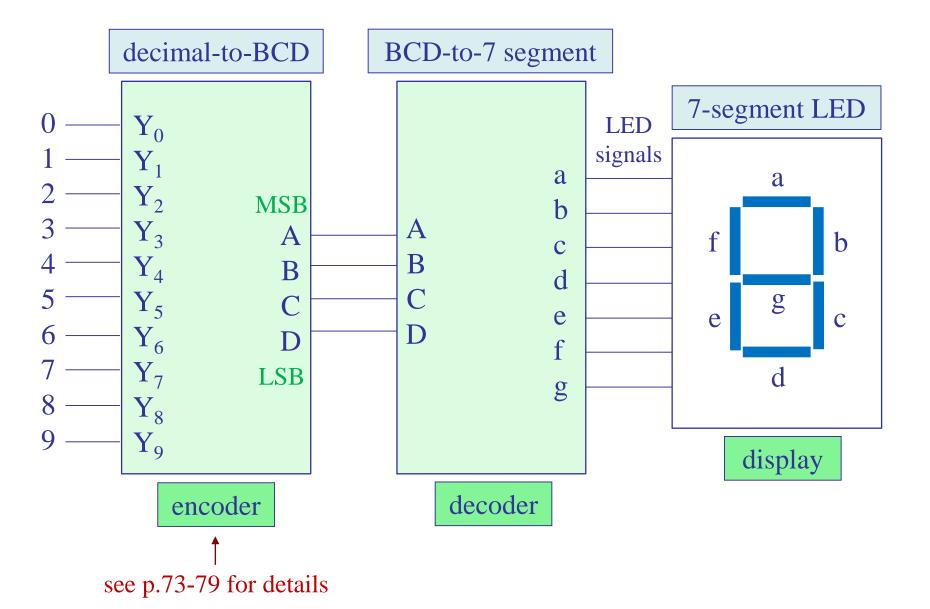

Figure 6-23 Seven-segment LED display. (a) segment identification (b) decimal digits

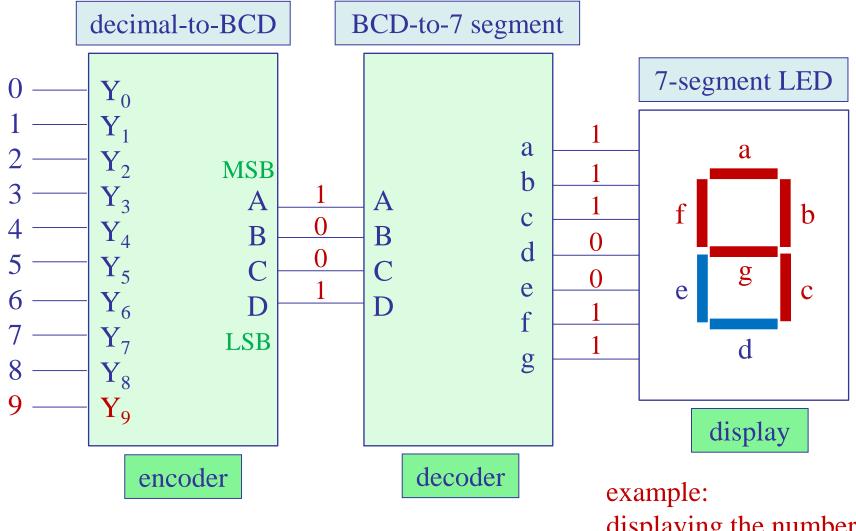
applications: digital clocks & watches calculator & appliance displays digital instrumentation displays digital counters, kitchen timers



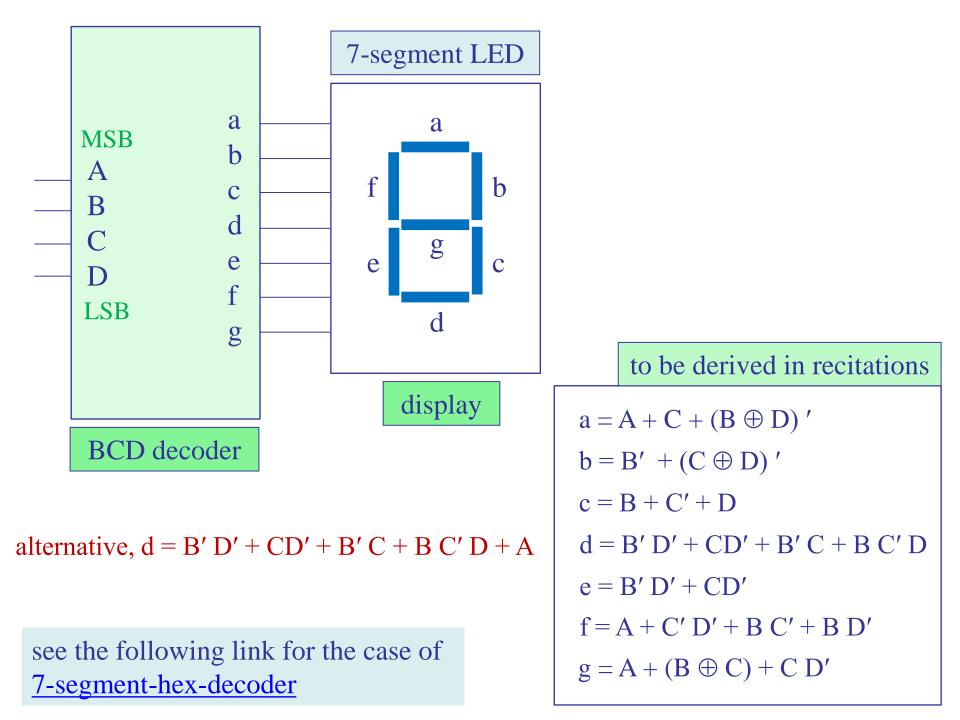
Decoders

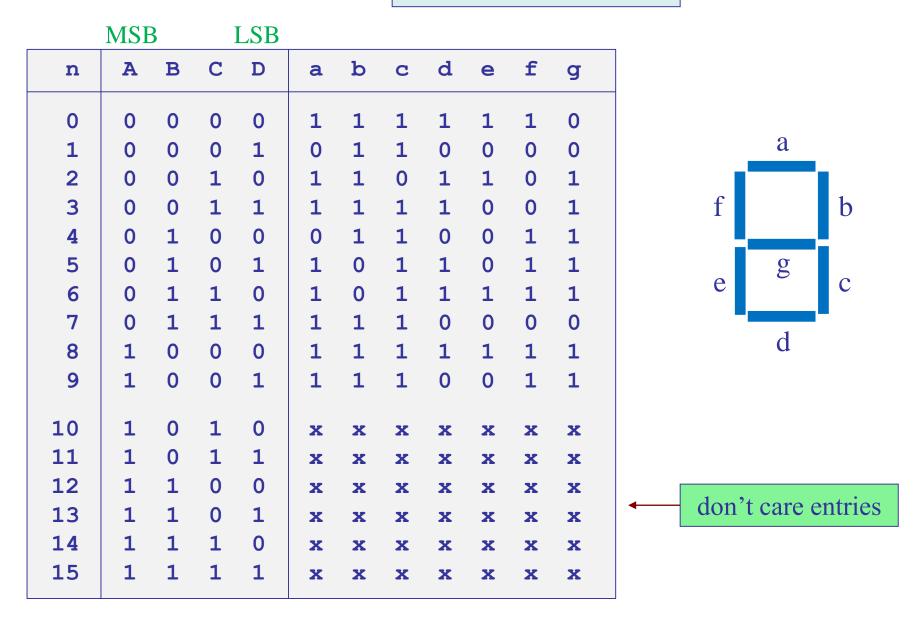
	I	nputs						0	utput	s			Decoders
BI_L	D	CB	BC	A		а	b	С	d	е	f	g	Decouers
0	Х	х	Х	Х		0	0	0	0	0	0	0	74x49
1	0	0	0	0	0	1	1	1	1	1	1	0	³ O BI a ¹¹
1	0	0	0	1	1	0	1	1	0	0	0	0	b 10
1	0	0	1	0	2	1	1	0	1	1	0	1	$-\frac{5}{1}$ A C $\frac{9}{8}$
1	0	0	1	1	3	1	1	1	1	0	0	1	
1	0	1	0	0	4	0	1	1	0	0	1	1	$\begin{array}{c} 2 \\ \hline 4 \\ \hline \end{array} D \\ f \\ \hline 13 \\ \hline \end{array}$
1	0	1	0	1	5	1	0	1	1	0	1	1	g <u>12</u>
1	0	1	1	0	6	0	0	1	1	1	1	1	
1	0	1	1	1	7	1	1	1	0	0	0	0	a
1	1	0	0	0	8	1	1	1	1	1	1	1	
1 x	1	0	0	1	9	1	1	1	0	0	1	1	f b
1	1	0	1	0		0	0	0	1	1	0	1	G
1	1	0	1	1		0	0	1	1	0	0	1	e ^g c
C 1	1	1	0	0		0	1	0	0	0	1	1	
1	1	1	0	1		1	0	0	1	0	1	1	d
1	1	1	1	0		0	0	0	1	1	1	1	dan't ann antrian
1	1	1	1	1		0	0	0	0	0	0	0	don't care entries, but incorrect for her



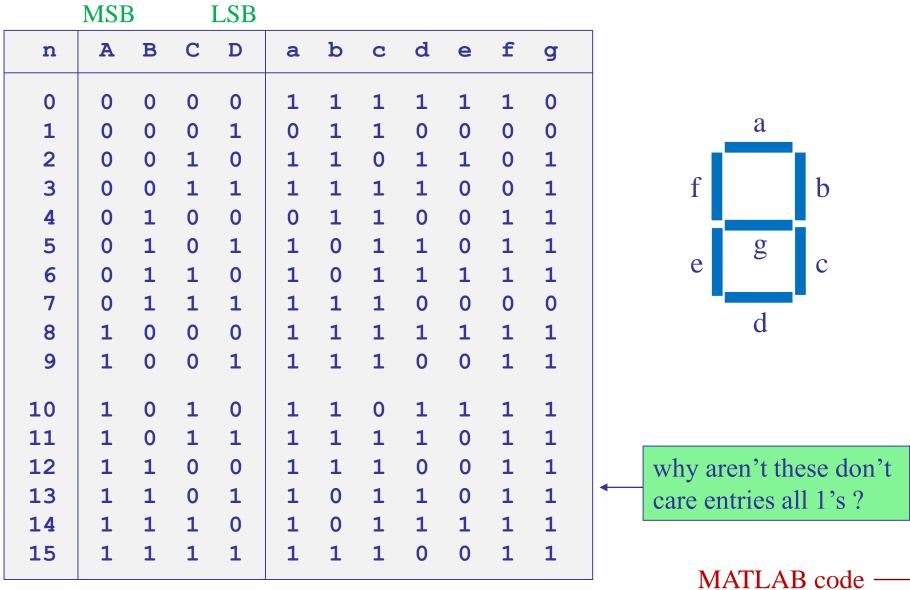


will be explored further in recitation exercises


BCD to seven-segment display encoder/decoder system


BCD to seven-segment display encoder/decoder system

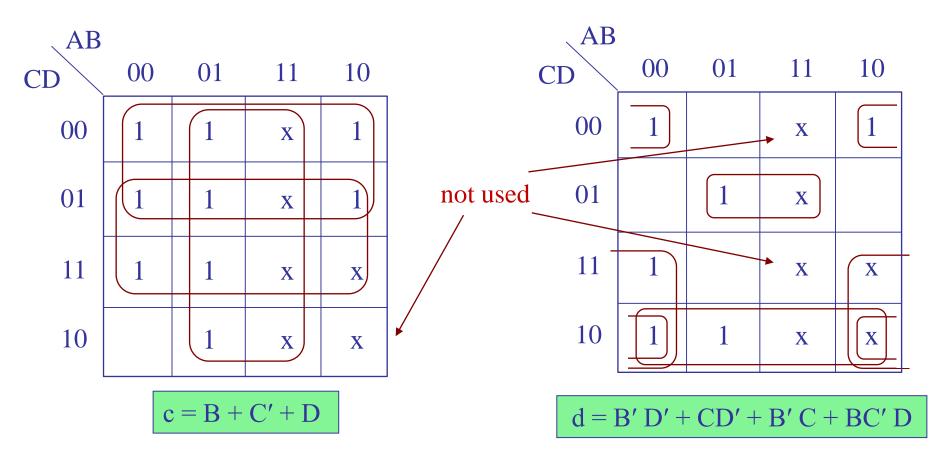
displaying the number 9



BCD decoder truth table

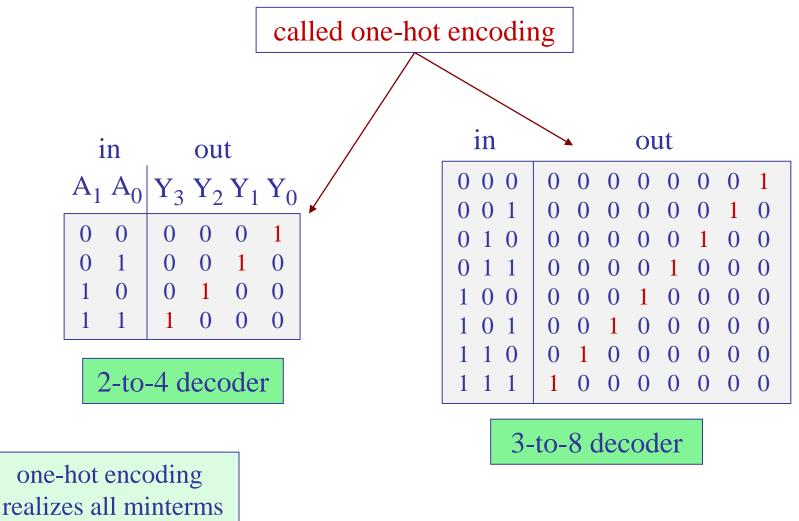
if 9 has only the e segment off, then use, d = B'D' + CD' + B'C + BC'D + A

actual truth table

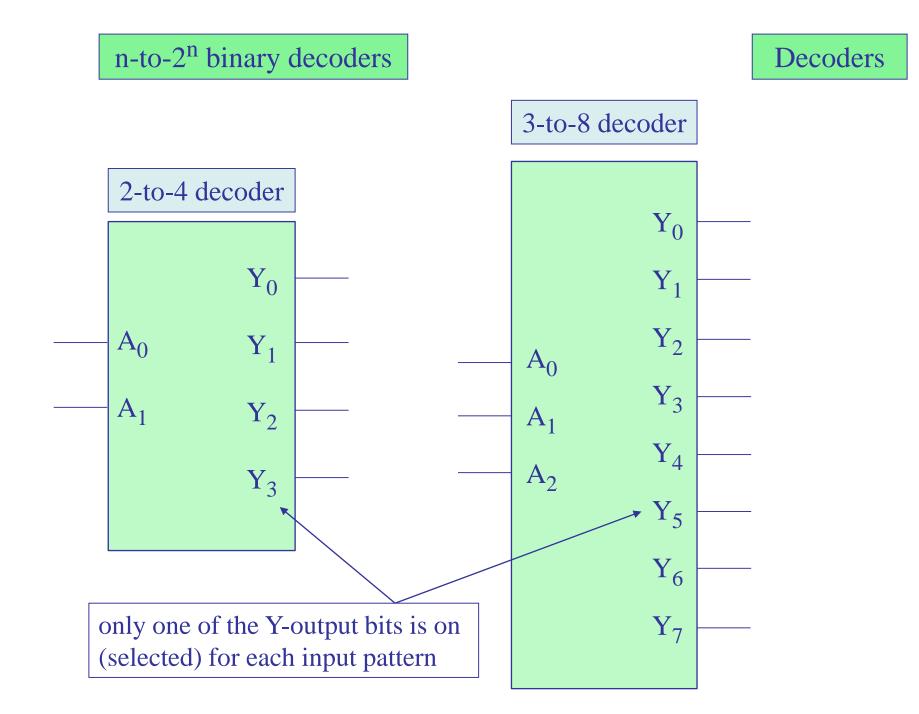


and in recitation solutions

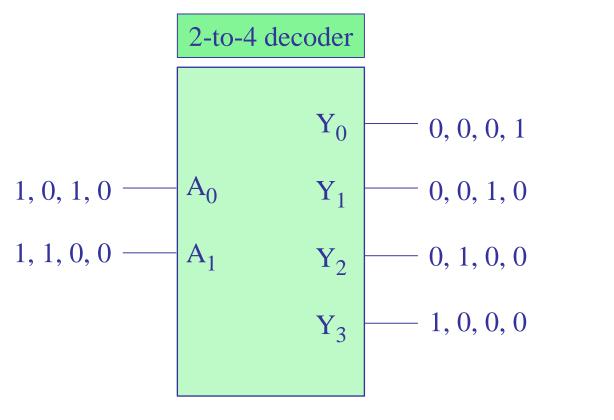
```
a = A + C + (B \oplus D)'
                                               b = B' + (C \oplus D)'
                                               c = B + C' + D
n = (0:15)';
                                               \mathbf{d} = \mathbf{B'} \mathbf{D'} + \mathbf{C}\mathbf{D'} + \mathbf{B'} \mathbf{C} + \mathbf{B}\mathbf{C'} \mathbf{D}
[A,B,C,D] = a2d(n,4);
                                               e = B' D' + CD'
                                               f = A + C' D' + B C' + B D'
a = A \mid C \mid \sim xor(B,D);
                                               g = A + B \oplus C + C D'
b = ~B | ~xor(C,D);
c = B | \sim C | D;
d = (~B \& ~D) | (C \& ~D) | (B \& ~C \& D) | (~B \& C);
% d = (~B \& ~D) | (C \& ~D) | (B \& ~C \& D) | (~B \& C) | A;
e = (~B \& ~D) | (C \& ~D);
                                                                 alternative version
f = A | (B \& \sim C) | (\sim C \& \sim D) | (B \& \sim D);
                                                                 for representing the
                                                                 digit 9
g = A | xor(B,C) | (C \& ~D);
[n, A, B, C, D, a, b, c, d, e, f, g]
                                                          % truth table
```


Why aren't all don't care entries equal to 1 even though we take them as 1 in simplifying the K-maps?

Answer: Because in cases (b, c, d, e) not all of the don't care entries were used in the simplification, whereas in cases (a, f, g), all of them were used and they are indeed equal to 1 in the computed truth table



n-to-2ⁿ binary decoders



(explained below)

Decoders

•	
1	n

0 0 0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	1
0 0 0 1	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	1	0
0 0 1 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	1	0	0
0 0 1 1	0 (0 0	0	0	0	0	0	0	0	0	0	1	0	0	0
0 1 0 0	0 (0 0	0	0	0	0	0	0	0	0	1	0	0	0	0
0 1 0 1	0 (0 0	0	0	0	0	0	0	0	1	0	0	0	0	0
0 1 1 0	0 (0 0	0	0	0	0	0	0	1	0	0	0	0	0	0
0 1 1 1	0 (0 0	0	0	0	0	0	1	0	0	0	0	0	0	0
1 0 0 0			0	0	Δ	Δ	1	Δ	Δ	0	Δ	0	0	0	0
1 0 0 0	0 0) ()	0	U	U	U	T	U	U	0	U	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0		-	_		0	-	_	_	_	0	Ŭ	0
	0 (0		0	1	0		0	0	0	_	0	Ŭ	~
1 0 0 1	000	0 0	0 0	0 0	0 1	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 0 0	0 0 0	0 0 1	0 1 0	1 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0	0 0	0 0 0	0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 0 0 0 0	0 0 0 1	0 0 1 0	0 1 0 0	1 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) ()) ()) ()) ()	0 0 0 1	0 0 1 0 0	0 1 0 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 0) 1) 0 	0 0 0 1 0	0 0 1 0 0 0	0 1 0 0 0 0	1 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0

4-to-16 decoder

Table 6-3. Truth table for a 2-to-4 binary decoder with enable

	1	nputs			Outputs					
	EN	A1	A0	5.6 0	Y3	Y2	Y1	Y0		
	0	X	x		0	0	0	0		
don't care	1	0	0	0	0	0	0	1		
entries	1	0	1	1	0	0	1	0		
	1	1	0	2	0	1	0	0		
	1	1	1	3	1	0	0	0		

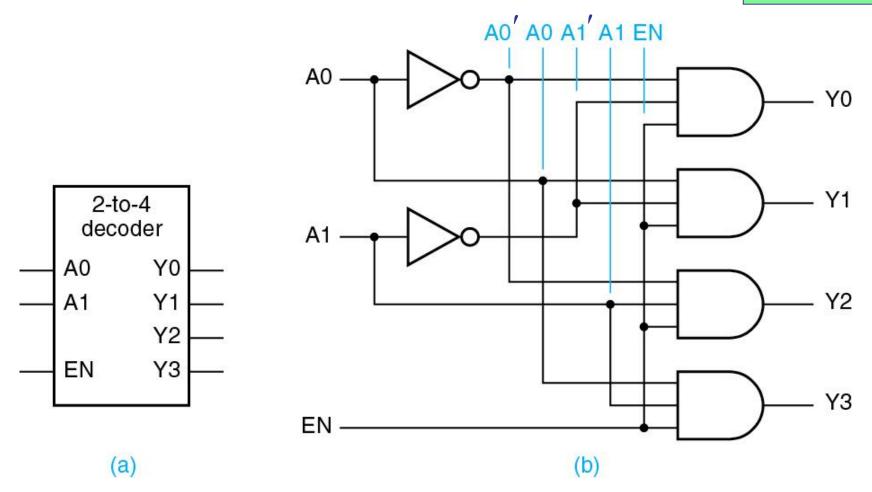
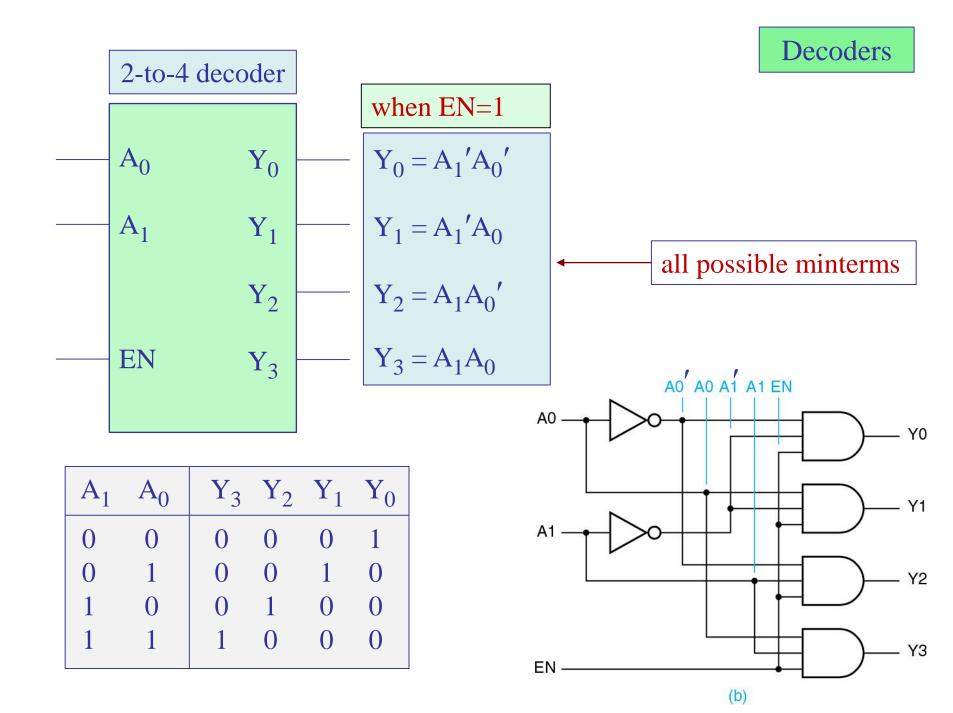



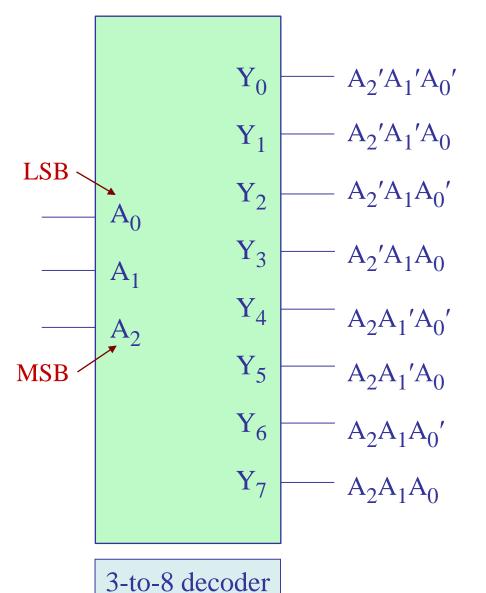
Figure 6-15. 2-to-4 decoder with enable(a) Inputs and outputs(b) Logic diagram

truth table of 3-to-8 decoder

row	A ₂ A ₁ A ₀	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀	minterms			
0	0 0 0	0	0	0	0	0	0	0	1	A ₂ 'A ₁ 'A ₀ '			
1	0 0 1	0	0	0	0	0	0	1	0	A ₂ 'A ₁ 'A ₀			
2	0 1 0	0	0	0	0	0	1	0	0	A ₂ 'A ₁ A ₀ '			
3	0 1 1	0	0	0	0	1	0	0	0	A ₂ 'A ₁ A ₀			
4	1 0 0	0	0	0	1	0	0	0	0	A ₂ A ₁ 'A ₀ '			
5	1 0 1	0	0	1	0	0	0	0	0	A ₂ A ₁ 'A ₀			
6	1 1 0	0	1	0	0	0	0	0	0	A ₂ A ₁ A ₀ '			
7	1 1 1	1	0	0	0	0	0	0	0	$A_2A_1A_0$			
	1	1											
MS	MSB LSB			one-hot encoding						one-hot encoding realizes all 8 minterms			

Decoders

truth table of 2-to-4 decoder

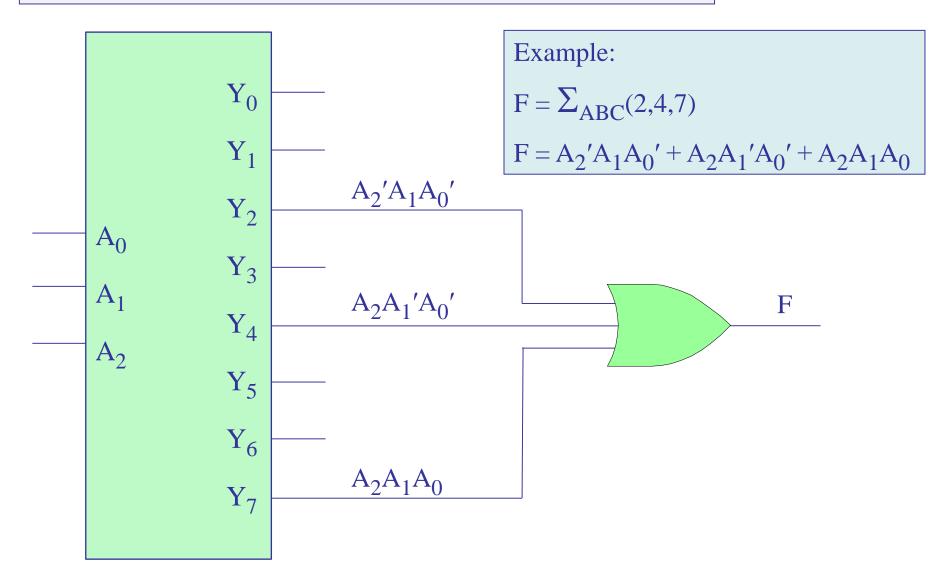

```
% generating the truth table
[A1, A0] = a2d(0:3, 2);
Y3 = A1 \& A0;
Y2 = A1 \& ~A0;
Y1 = ~A1 \& A0;
YO = ~A1 \& ~AO;
[A1, A0, Y3, Y2, Y1, Y0]
800000
                 1
8010010
8100100
8111000
```

$$Y_0 = A_1'A_0'$$

 $Y_1 = A_1'A_0$
 $Y_2 = A_1A_0'$
 $Y_3 = A_1A_0$

truth table of 3-to-8 decoder

% generat	ing	the	e	truth	table
[A2,A1,A0)] =	= a20	d (0:7,3)	;
Y7 = A2	&	A1 8	&	A0;	
Y6 = A2	&	A1 8	&	~A0 ;	
Y5 = A2	& ~	A1	&	A0 ;	
Y4 = A2	& ~	A1	&	~A0 ;	
Y3 = ~A2	&	A1 8	&	A0 ;	
$Y2 = \sim A2$	&	A1	&	~A0 ;	
Y1 = ~A2	& ~	A1	&	A0 ;	
$Y0 = \sim A2$	& ~	A1	&	~A0;	
[A2,A1,A0), Y7	,Y6	, Y	'5,Y4,Y	3, Y2, Y1, Y0]


Realizing arbitrary combinational functions with decoders

all possible A,B,C minterms

Decoders

Decoders can implement arbitrary combinational functions, because the decoder outputs are all possible minterms, similar to using ROMs or look-up-tables in FPGAs.

Decoders

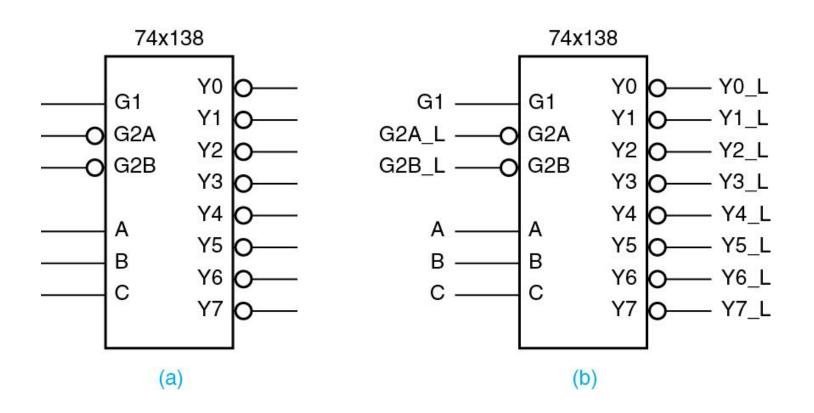
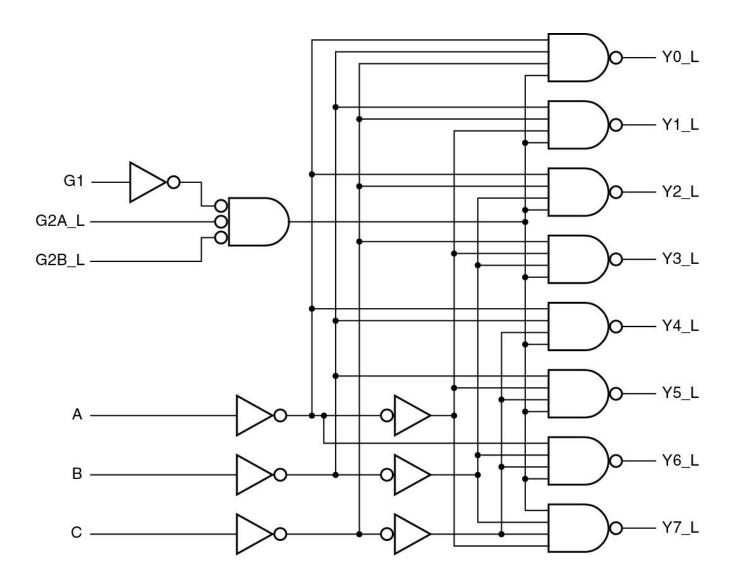
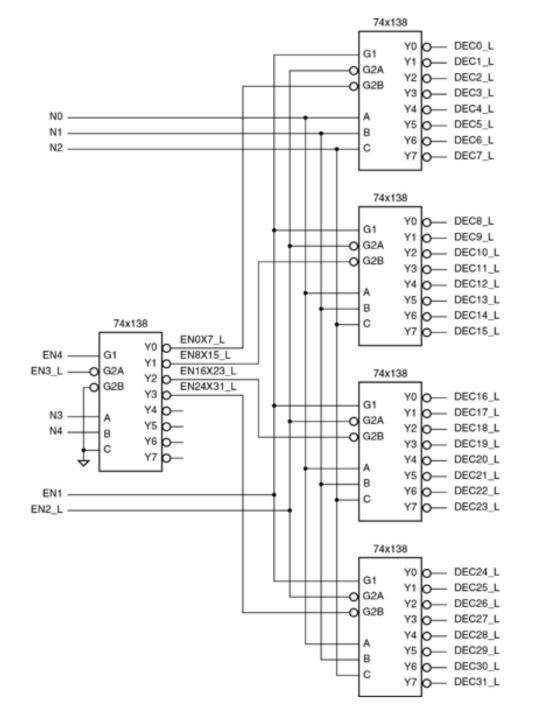



Figure 6-16. Logic symbol for the 74x138 3-to-8 decoder.(a) conventional symbol(b) default signal names associated with external pins

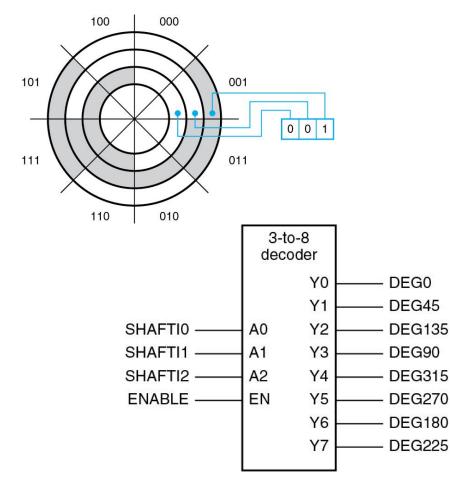


active-low outputs

Figure 6-17. Logic diagram for the 74x138 3-to-8 decoder

	MSB						acti	ve-lov	w outp	puts					
		Inputs					Outputs								
G1	G2A_L	G2B_L	с	в	Α	Y7_L	Y6_L	Y5_L	Y4_L	Y3_L	Y2_L	Y1_L	Y0_L		
0	х	х	x	x	х	1	1	1	1	1	1	1	1		
х	1	x	х	х	x	1	1	1	1	1	1	1	1		
х	x	1	х	х	x	1	1	1	1	1	1	1	1		
1	0	0	0	0	0	1	1	1	1	1	1	1	0		
1	0	0	0	0	1	1	1	1	1	1	1	0	1		
1	0	0	0	1	0	1	1	1	1	1	0	1	1		
1	0	0	0	1	1	1	1	1	1	0	1	1	1		
1	0	0	1	0	0	1	1	1	0	1	1	1	1		
1	0	0	1	0	1	1	1	0	1	1	1	1	1		
1	0	0	1	1	0	1	0	1	1	1	1	1	1		
1	0	0	1	1	1	0	1	1	1	1	1	1	1		

Figure 6-17. Truth table of the 74x138 3-to-8 decoder

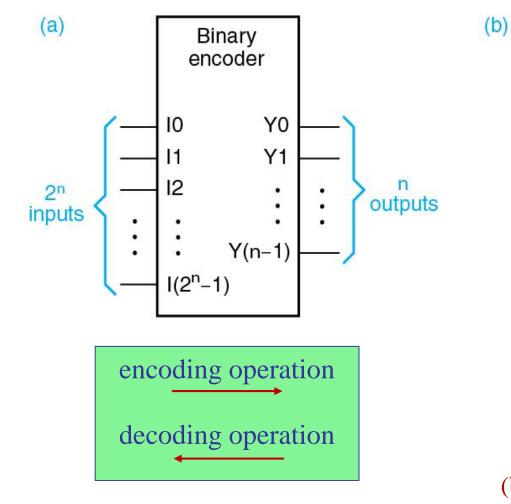

Decoders

realizing larger decoders from smaller ones

Fig. 6-19. Building a 5-to-32 decoder using five 3-to-8 decoders

More generally, it is not necessary to use all of the outputs of a decoder, or even to decode all input combinations (e.g., as in BCD-to-7 segment displays), or that the input combinations are in binary order.

Here is another example of a shaft-position decoder using Gray coding


Disk Position	A2	A1	A0	Binary Decoder Output
0°	0	0	0	Y0
45°	0	0	1	Y1
90°	0	1	1	Y3
135°	0	1	0	Y2
180°	1	1	0	Y6
225°	1	1	1	Y7
270°	1	0	1	Y5
315°	1	0	0	Y4

Decoders

see Wakerly, Ch. 2 & Ch. 6

2ⁿ-to-n binary encoders perform the opposite function of n-to-2ⁿ binary decoders

Encoders

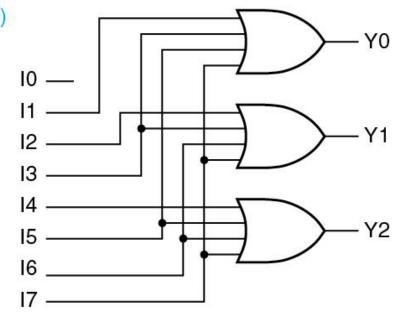
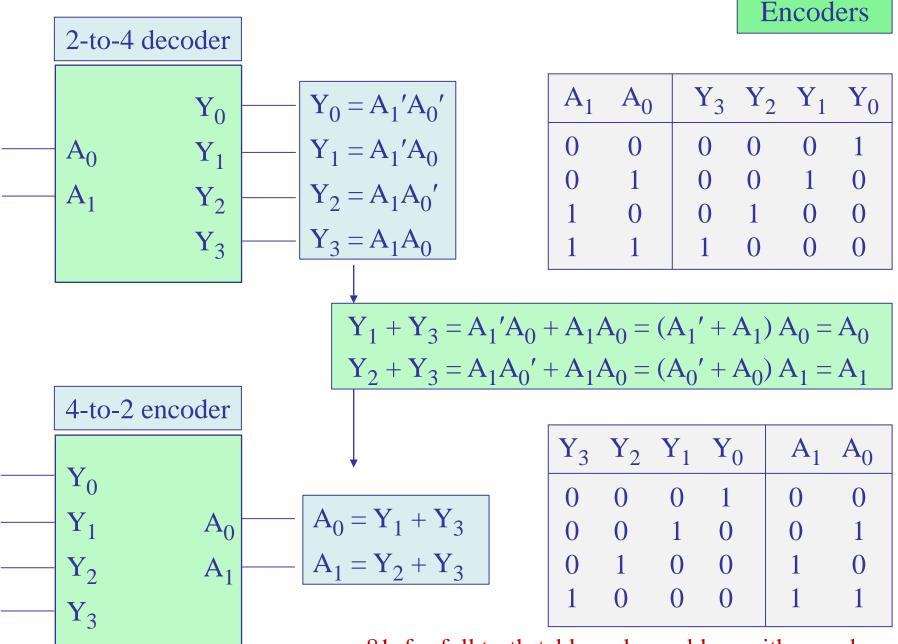
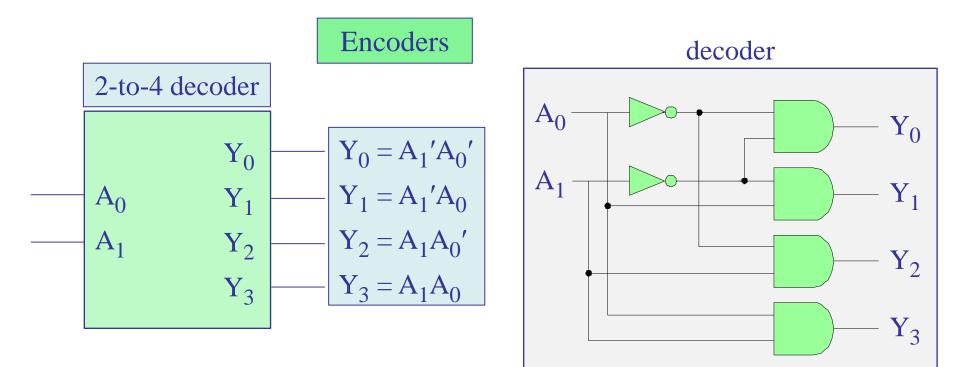
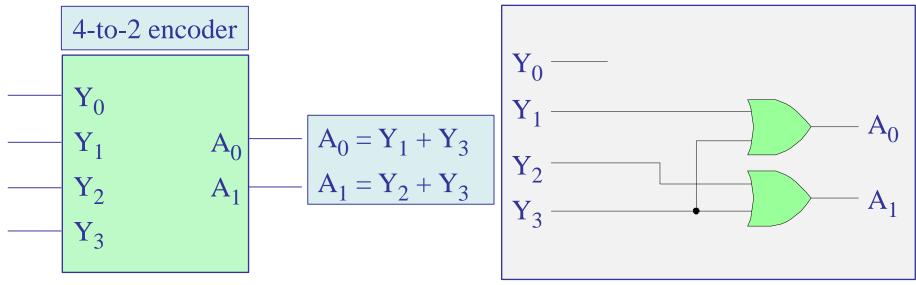
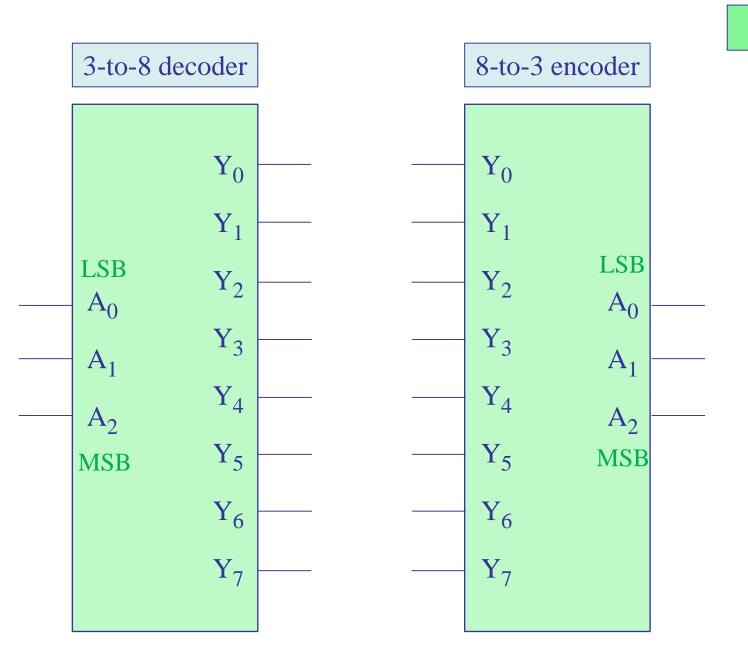
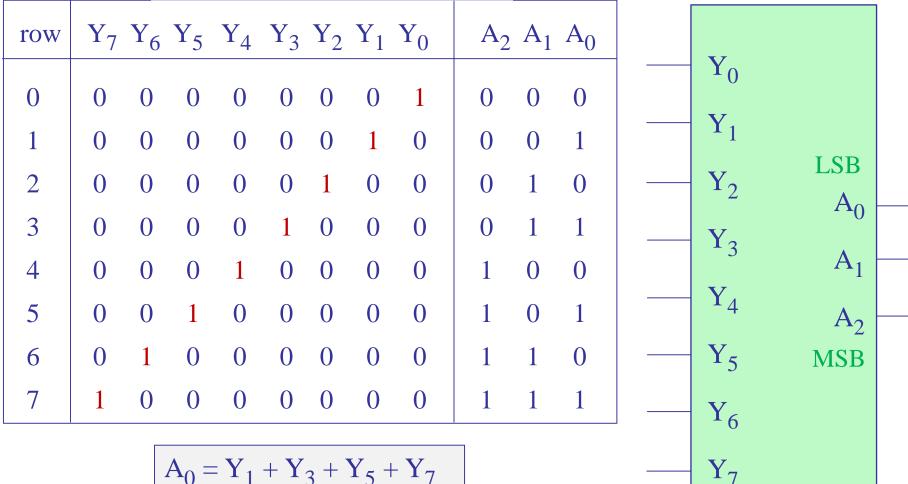




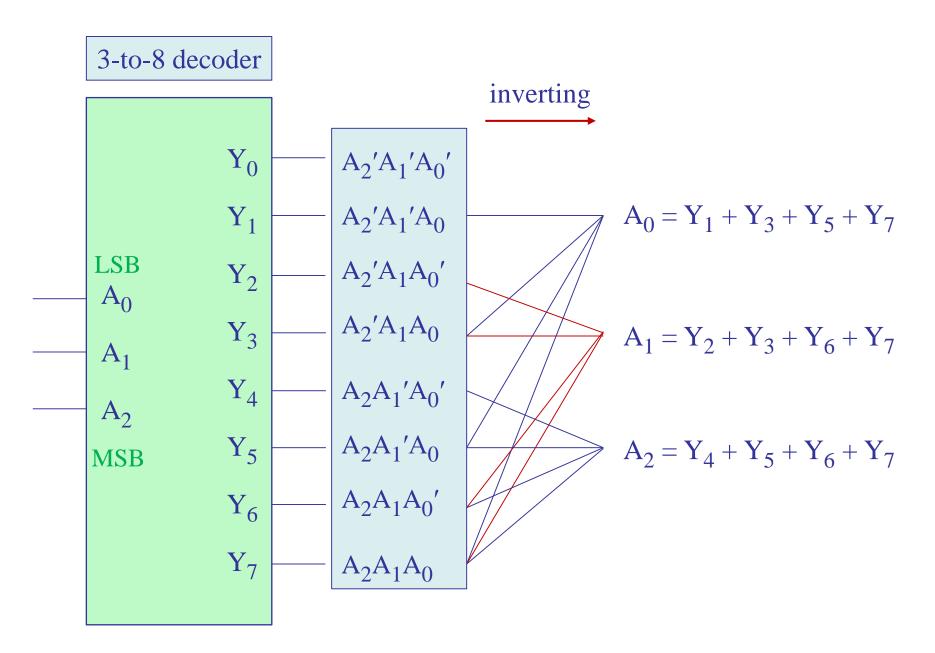
Figure 6-24. Binary encoder. (a) general structure (b) 8-to-3 encoder


(block diagram to be explained below)



see p.81, for full truth-table and a problem with encoders

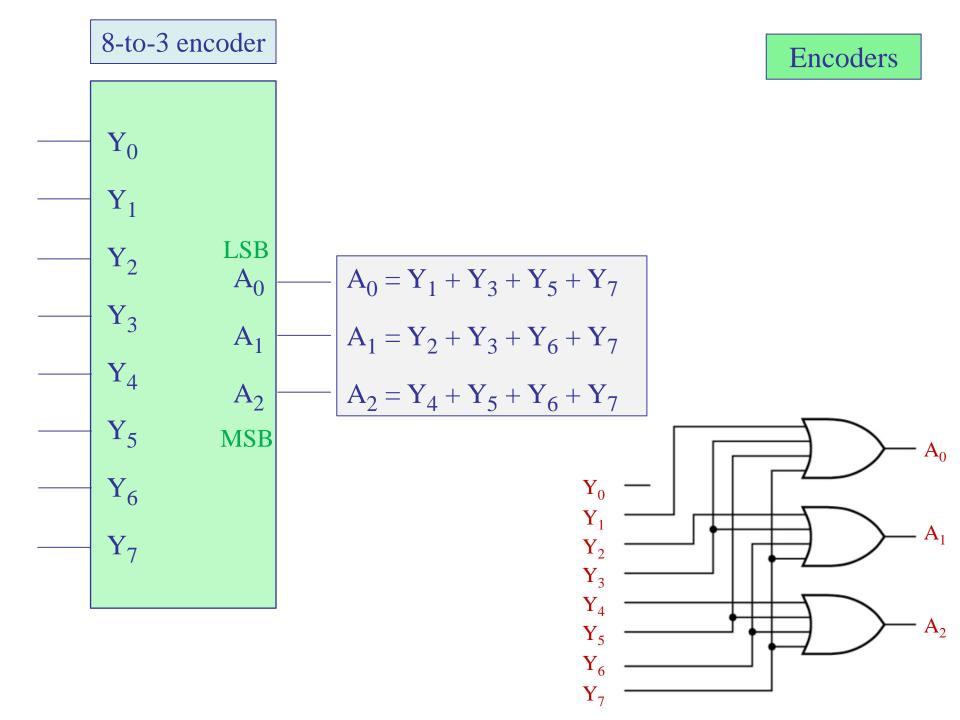



Encoders

truth table of 8-to-3 encoder

8-to-3 encoder

$$A_0 = Y_1 + Y_3 + Y_5 + Y_7$$
$$A_1 = Y_2 + Y_3 + Y_6 + Y_7$$
$$A_2 = Y_4 + Y_5 + Y_6 + Y_7$$

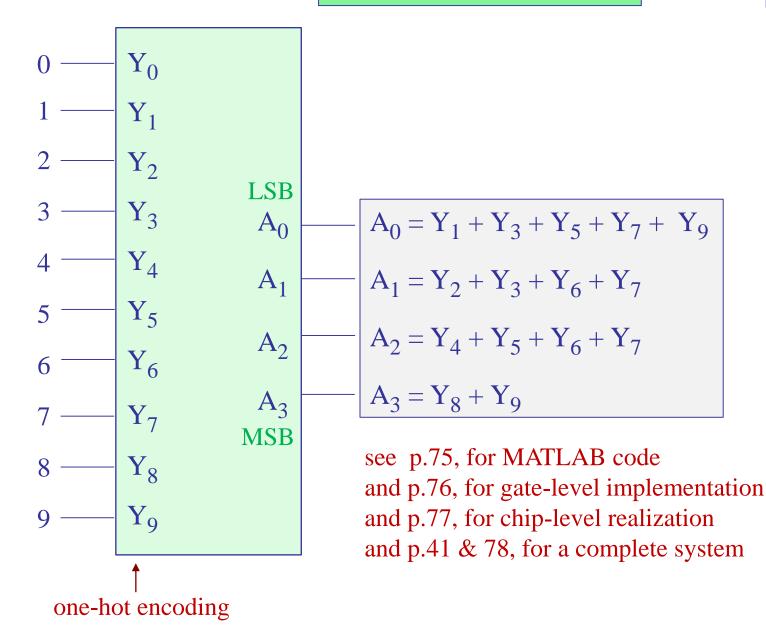

demonstration of simplification steps:

$$Y_1 + Y_3 + Y_5 + Y_7 = A_2'A_1'A_0 + A_2'A_1A_0 + A_2A_1'A_0 + A_2A_1A_0$$
$$= A_2'(A_1' + A_1)A_0 + A_2(A_1' + A_1)A_0$$
$$= A_2'A_0 + A_2A_0 = (A_2' + A_2)A_0 = A_0$$

alternatively, we have,

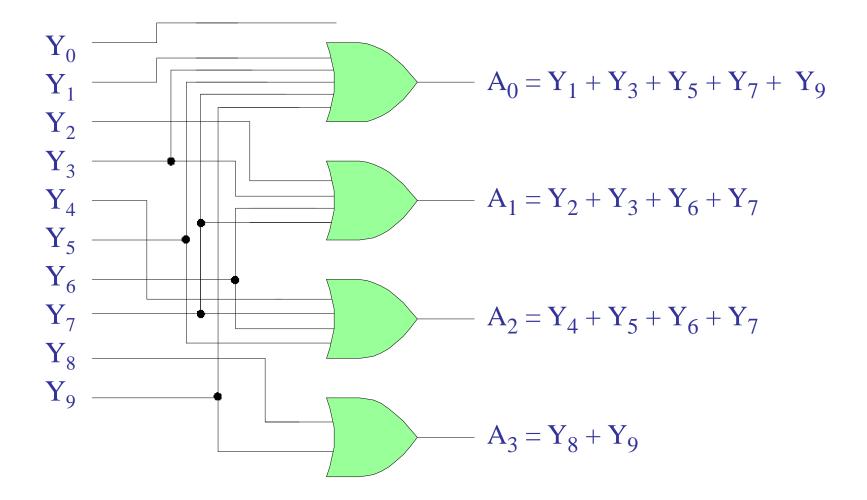
$$Y_{1} + Y_{3} + Y_{5} + Y_{7} = A_{2}'A_{1}'A_{0} + A_{2}'A_{1}A_{0} + A_{2}A_{1}'A_{0} + A_{2}A_{1}A_{0}$$
$$= (A_{2}'A_{1}' + A_{2}'A_{1} + A_{2}A_{1}' + A_{2}A_{1})A_{0}$$
$$= (A_{2}' + A_{2})(A_{1}' + A_{1})A_{0} = A_{0}$$

will be explored further in recitation exercises



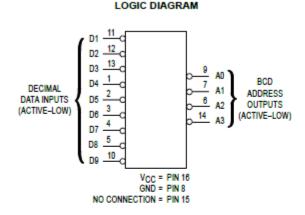
Encoders

		inputs									BCD	co	de	
n	Y9	Y ₈	¥7	¥ ₆	¥ ₅	Y ₄	¥3	¥2	Y ₁	Y ₀	A ₃	A ₂	A ₁	A ₀
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	0	0	1
2	0	0	0	0	0	0	0	1	0	0	0	0	1	0
3	0	0	0	0	0	0	1	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0	0	0	0	1	0	0
5	0	0	0	0	1	0	0	0	0	0	0	1	0	1
6	0	0	0	1	0	0	0	0	0	0	0	1	1	0
7	0	0	1	0	0	0	0	0	0	0	0	1	1	1
8	0	1	0	0	0	0	0	0	0	0	1	0	0	0
9	1	0	0	0	0	0	0	0	0	0	1	0	0	1


one-hot encoding of the ten integers 0,1,...,9 see p.75, on how to generate such table with MATLAB

Encoders

```
% decimal-to-BCD truth table on p.73
Y = fliplr(eye(10));
Y9 = Y(:,1); \quad Y8 = Y(:,2); \quad Y7 = Y(:,3);
Y6 = Y(:,4); Y5 = Y(:,5); Y4 = Y(:,6);
Y3 = Y(:,7); Y2 = Y(:,8); Y1 = Y(:,9);
YO = Y(:, 10);
                                  A_0 = Y_1 + Y_3 + Y_5 + Y_7 + Y_9
                                 A_1 = Y_2 + Y_3 + Y_6 + Y_7
A3 = Y8 | Y9;
                                 |A_2 = Y_4 + Y_5 + Y_6 + Y_7|
A2 = Y4 | Y5 | Y6 | Y7;
A1 = Y2 | Y3 | Y6 | Y7;
                                 |A_3 = Y_8 + Y_9|
A0 = Y1 | Y3 | Y5 | Y7 | Y9;
[Y,A3,A2,A1,A0]
                             % print table
```



will be explored further in recitation exercises

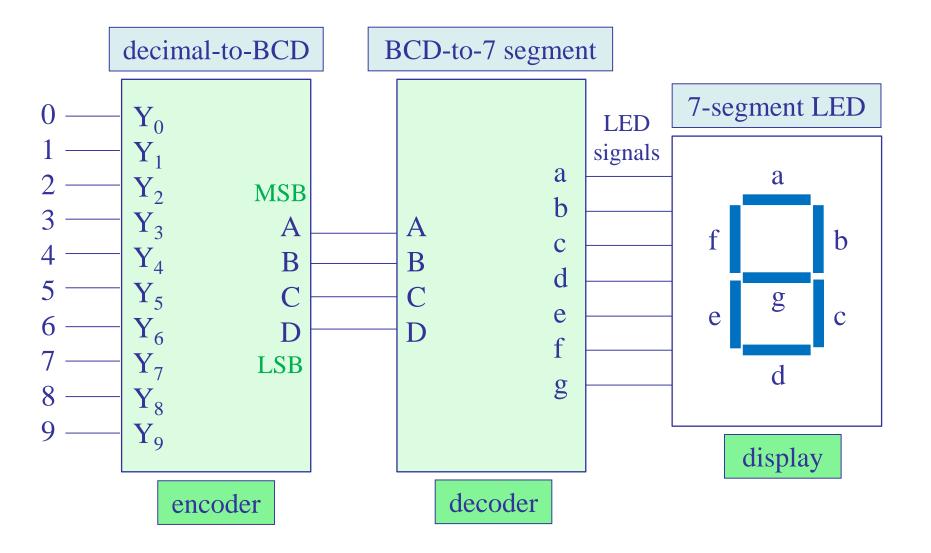
High-Performance Silicon-Gate CMOS

The MC74HC147 is identical in pinout to the LS147. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device encodes nine active-low data inputs to four active-low BCD Address Outputs, ensuring that only the highest order active data line is encoded. The implied decimal zero condition is encoded when all nine data inputs are at a high level (inactive).

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 136 FETs or 34 Equivalent Gates

MC74HC147


PIN ASSIGNMENT						
D4 C	1•	16 VCC				
D5 C	2	15 D NC				
D6 🗆	3	14 A3				
D7 C	4	13 03				
D8 [5	12 02				
A2 [6	11 01				
A1 [7	10 09				
GND D	8	9 A A B				
NC = NO CONNECTION						

FUNCTION TABLE

	Inputs								Outputs			
D9	D8	D7	D6	D5	D4	D3	D2	D1	A 3	A2	A1	A0
Н	Н	Н	Н	Н	н	н	Н	Η	н	Н	Н	Н
н	н	н	н	н	н	н	н	L	н	н	н	L
н	н	н	н	н	н	н	L	х	н	н	L	н
н	н	н	н	н	н	L	х	х	н	н	L	L
н	н	н	н	н	L	х	х	х	н	L	н	н
н	н	н	н	L	х	х	х	х	н	L	н	L
н	н	н	L	х	х	х	х	х	н	L	L	н
н	н	L	х	х	х	х	х	х	н	L	L	L
н	L	х	х	х	х	х	х	х	L	н	н	н
L	х	х	х	х	х	х	х	х	L	н	н	L

Encoders

BCD to seven-segment display encoder/decoder system

three-state buffers

Encoders

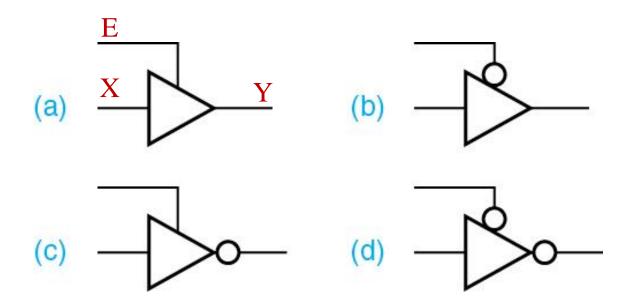
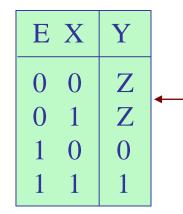
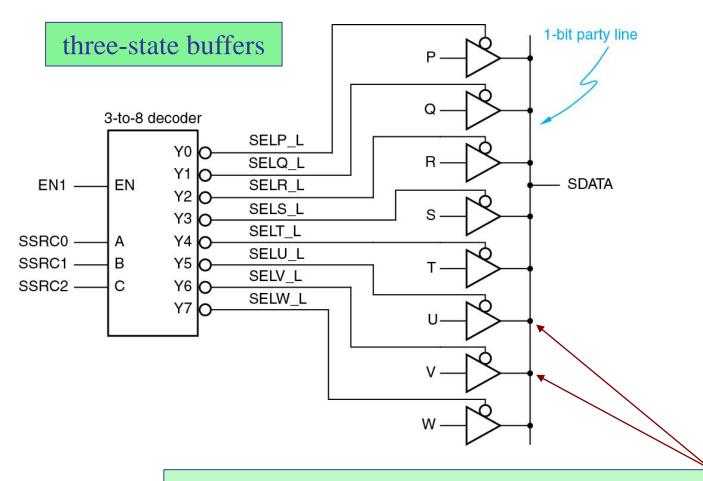
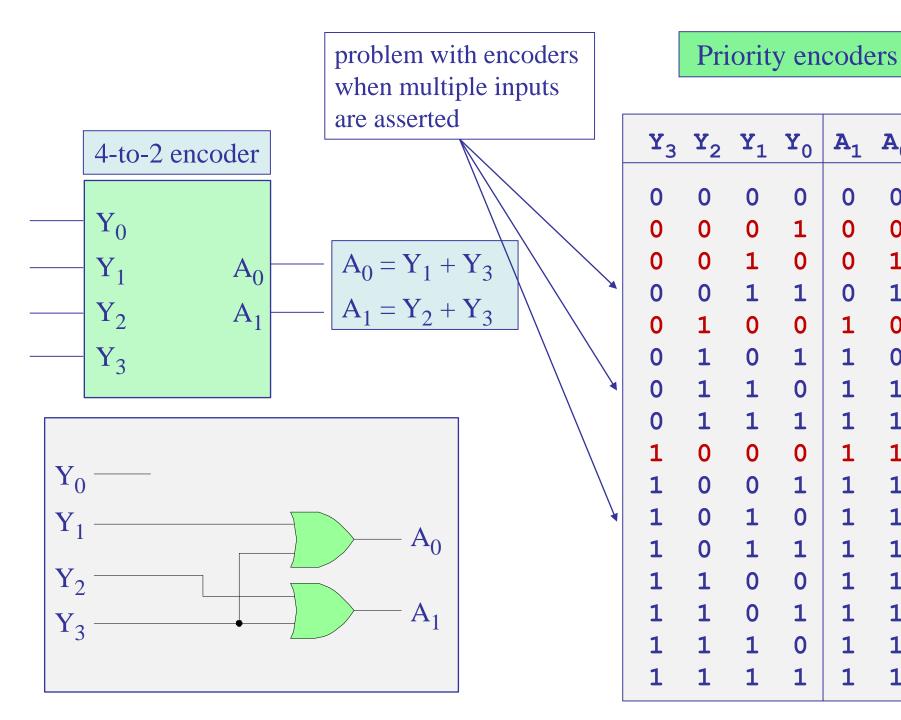




Figure 7-1. Various three-state buffers (a,b) non-inverting (c,d) inverting (a,c) active-high enable (b,d) active-low enable

high-impedance state, with X effectively disconnected from Y


truth table for (a)

normally, one cannot connect the outputs like that, however, here, only one of the outputs is active at a time, the others being disabled by going into their high-impedance state

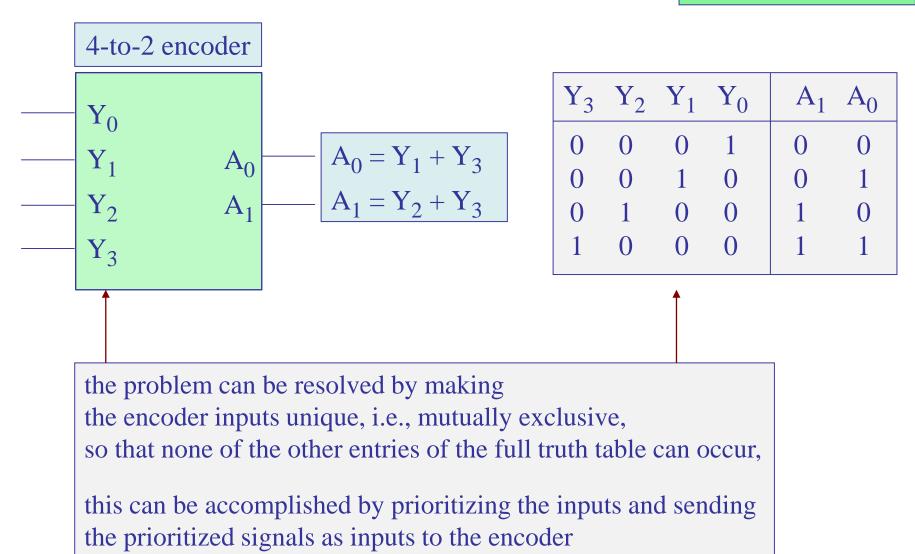
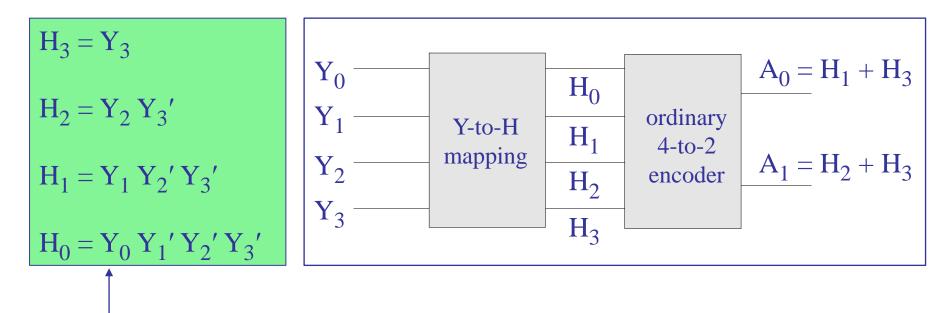

Encoders

Figure 7-2. Eight sources sharing a single three-state party line

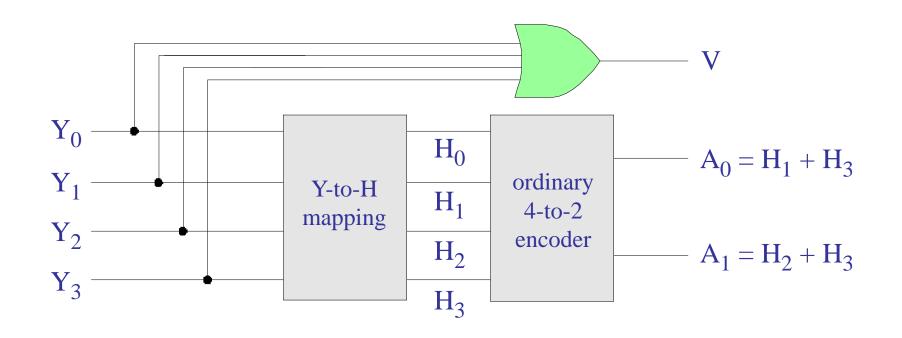

 $\mathbf{A}_{\mathbf{0}}$

Priority encoders

we assign highest priority to the input Y_3 , and then to Y_2 , Y_1 , Y_0 , and we construct the following high-priority signals, H_3 , H_2 , H_1 , H_0 , and then pass them to an ordinary 4-to-2 encoder to generate the encoded A_1 , A_0 outputs

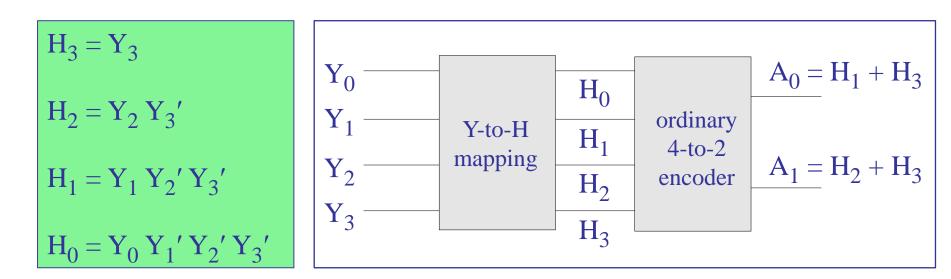
Priority encoders

if Y_3 is not ON, then Y_2 has next priority if neither Y_3 nor Y_2 are ON, then Y_1 has next priority and if none of Y_3, Y_2, Y_1 are ON, then Y_0 has next priority it is common also to define the "validation" signal


 $V = Y_3 + Y_2 + Y_1 + Y_0$

that is asserted if any of the inputs is ON,

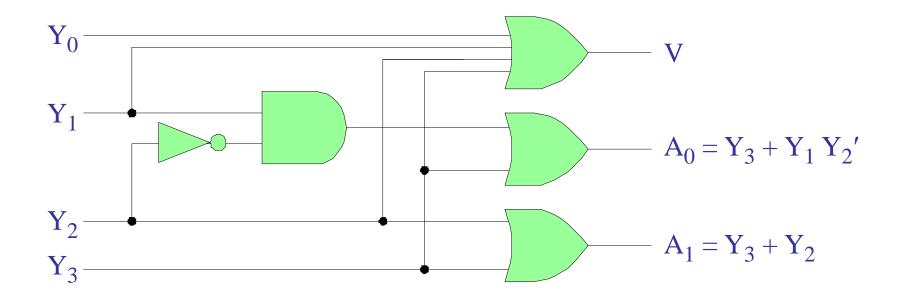
note that the Wakerly text uses active-low logic and uses the complement of V, called IDLE,


 $IDLE = V' = Y_3' Y_2' Y_1' Y_0'$

Priority encoders

further simplifications

Priority encoders

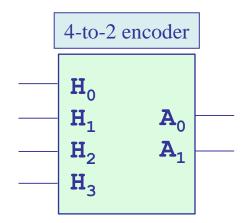


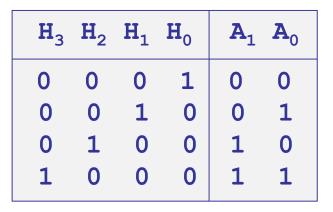
using the distributive property,
$$A + BC = (A+B)(A+C)$$

$$A_0 = H_1 + H_3 = Y_3 + Y_1 Y_2' Y_3' = (Y_3 + Y_3') (Y_3 + Y_1 Y_2') = Y_3 + Y_1 Y_2'$$

$$A_1 = H_2 + H_3 = Y_3 + Y_2 Y_3' = (Y_3 + Y_3') (Y_3 + Y_2) = Y_3 + Y_2$$

gate-level realization of a 4-to-2 priority encoder




we may verify that this works as expected by computing the full truth table of the Y-inputs, H-inputs, and A-outputs, shown on the next page, and computed with MATLAB on p.89

Y ₃	Y ₂	Y ₁	Y ₀	H ₃	H ₂	H ₁	H ₀	A ₁	A ₀	v
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1	1
0	1	0	0	0	1	0	0	1	0	1
0	1	0	1	0	1	0	0	1	0	1
0	1	1	0	0	1	0	0	1	0	1
0	1	1	1	0	1	0	0	1	0	1
1	0	0	0	1	0	0	0	1	1	1
1	0	0	1	1	0	0	0	1	1	1
1	0	1	0	1	0	0	0	1	1	1
1	0	1	1	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0	1	1	1
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	1	0	0	0	1	1	1
1	1	1	1	1	0	0	0	1	1	1

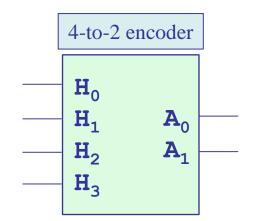
Priority encoders

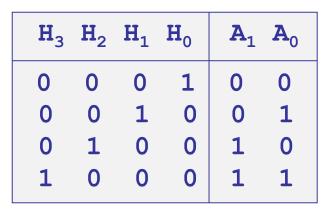
H-outputs are exclusive, and correspond to a plain 4-to-2 binary encoder

compressed truth table

Y ₃	Y ₂	Y ₁	Y ₀	H ₃	H ₂	H ₁	H ₀	A ₁	A ₀	V
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	1
0	0	1	x		0		0	0	1	1
0	1	x	x	0	1	0	0	1	0	1
1	x	x	x	1	0	0	0	1	1	1

if Y_3 is ON, then, $A_1A_0 = 11$, regardless of the values of $Y_2 Y_1 Y_0$

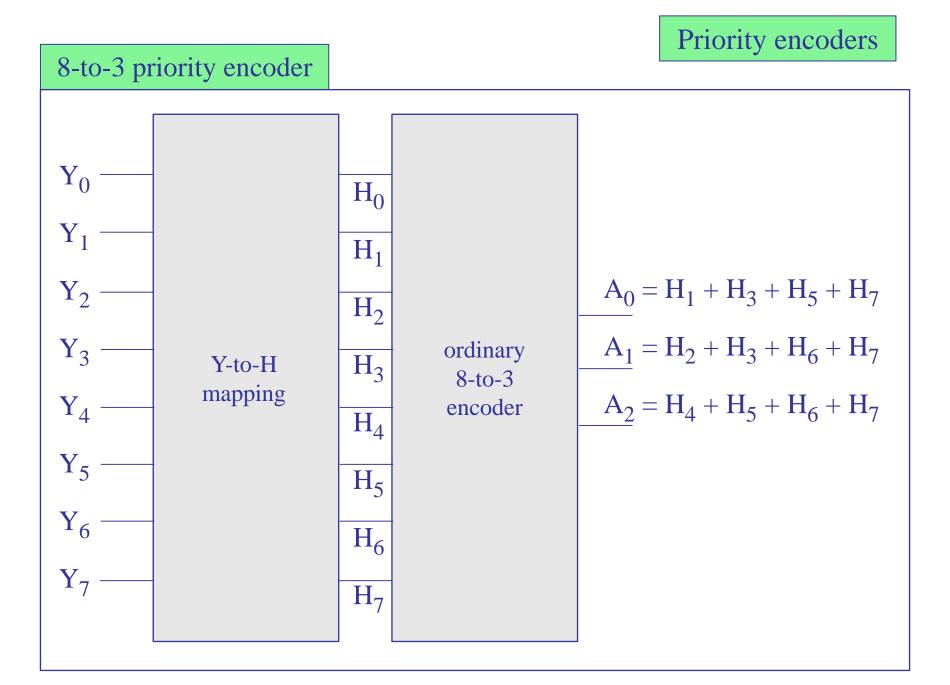

if Y_2 is ON, but Y_3 is OFF, then, $A_1A_0 = 10$, regardless of the values of $Y_1 Y_0$


if Y_1 is ON, but Y_2 and Y_3 are OFF, then, $A_1A_0 = 01$, regardless of the values of Y_0

if only Y_0 is ON, then, $A_1A_0 = 00$

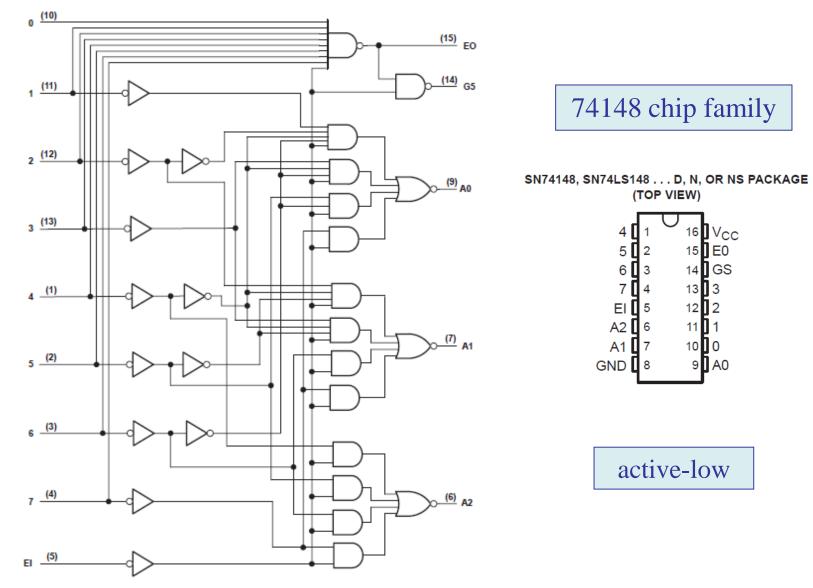
Priority encoders

H-outputs are exclusive, and correspond to a plain 4-to-2 binary encoder

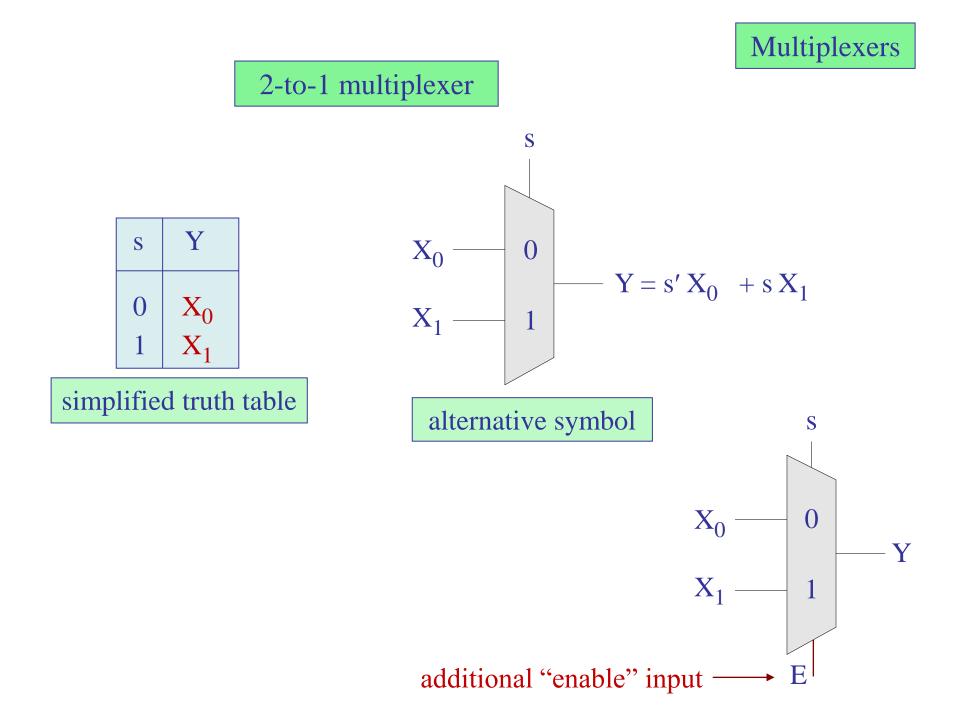

Priority encoders

<pre>% 4-to-2 priority encoder truth table</pre>	e
[Y3, Y2, Y1, Y0] = a2d(0:15, 4);	% inputs
H3 = Y3; H2 = Y2 & $(\sim Y3)$; H1 = Y1 & $(\sim Y2)$ & $(\sim Y3)$; H0 = Y0 & $(\sim Y1)$ & $(\sim Y2)$ & $(\sim Y3)$;	<pre>% intermediate % inputs to % plain 4-to-2 % binary encoder</pre>
A1 = H2 H3; A0 = H1 H3;	% outputs
% A1 = Y2 Y3; % A0 = (Y1 & (~Y2)) Y3;	<pre>% alternative % calculation</pre>
V = Y0 Y1 Y2 Y3;	<pre>% valid output</pre>
[Y3,Y2,Y1,Y0,H3,H2,H1,H0,A1,A0,V]	% truth table

the construction of higher order priority encoders is straightforward.

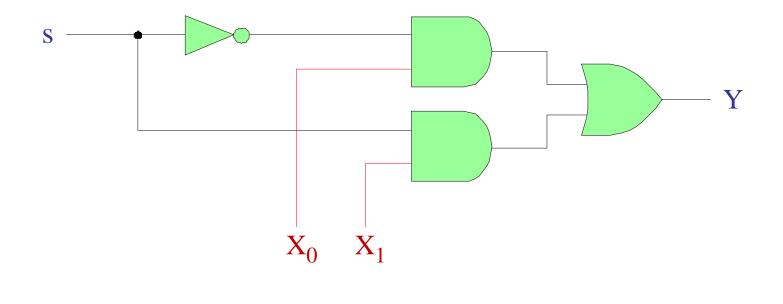

For example, in the 8-to-3 case, the high-priority signals are constructed as follows, assigning higher to lower priority in the order of, $Y_7, Y_6, Y_5, Y_4, Y_3, Y_2, Y_1, Y_0$,

$H_7 = Y_7$ $H_6 = Y_6 Y_7'$ 8-to-3 priority encoder	standard 8-to-3 encoder from p.72
$H_5 = Y_5 Y_6' Y_7'$ $H_4 = Y_4 Y_5' Y_6' Y_7'$	$A_0 = Y_1 + Y_3 + Y_5 + Y_7$ $A_1 = Y_2 + Y_3 + Y_6 + Y_7$
$H_{3} = Y_{3} Y_{4}' Y_{5}' Y_{6}' Y_{7}'$ $H_{2} = Y_{2} Y_{3}' Y_{4}' Y_{5}' Y_{6}' Y_{7}'$	$A_2 = Y_4 + Y_5 + Y_6 + Y_7$
$H_{1} = Y_{1} Y_{2}' Y_{3}' Y_{4}' Y_{5}' Y_{6}' Y_{7}'$ $H_{0} = Y_{0} Y_{1}' Y_{2}' Y_{3}' Y_{4}' Y_{5}' Y_{6}' Y_{7}'$	
$V = Y_0 + Y_1 + Y_2 + Y_3 + Y_4 + Y_5 + Y_6 + Y_7$	



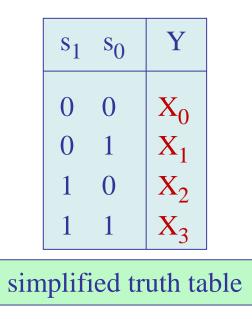
SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS SDLS053B - OCTOBER 1976 - REVISED MAY 2004

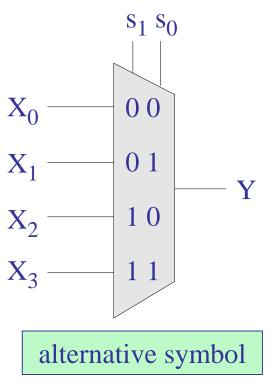
'148, 'LS148 logic diagram (positive logic)



Priority encoders

Multiplexers


2-to-1 multiplexer gate-level realization

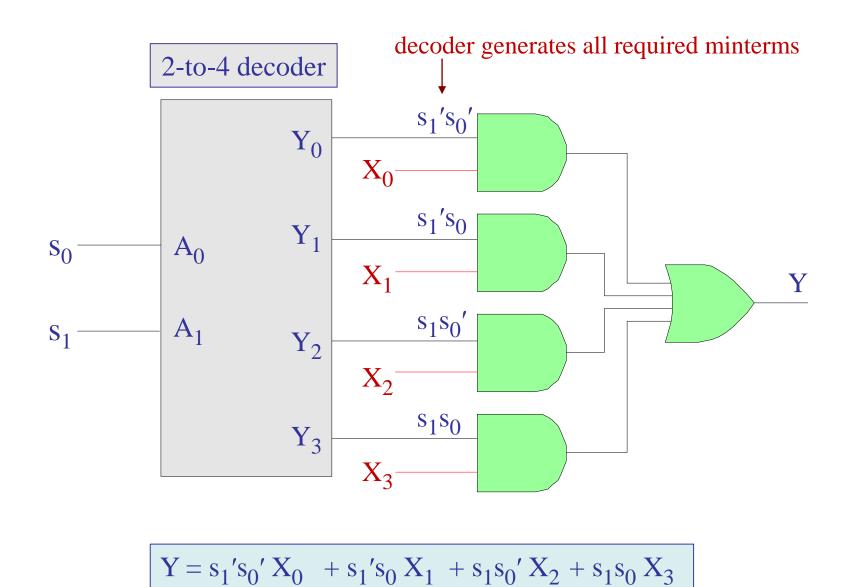


$$Y = s' X_0 + s X_1$$

4-to-1 multiplexer

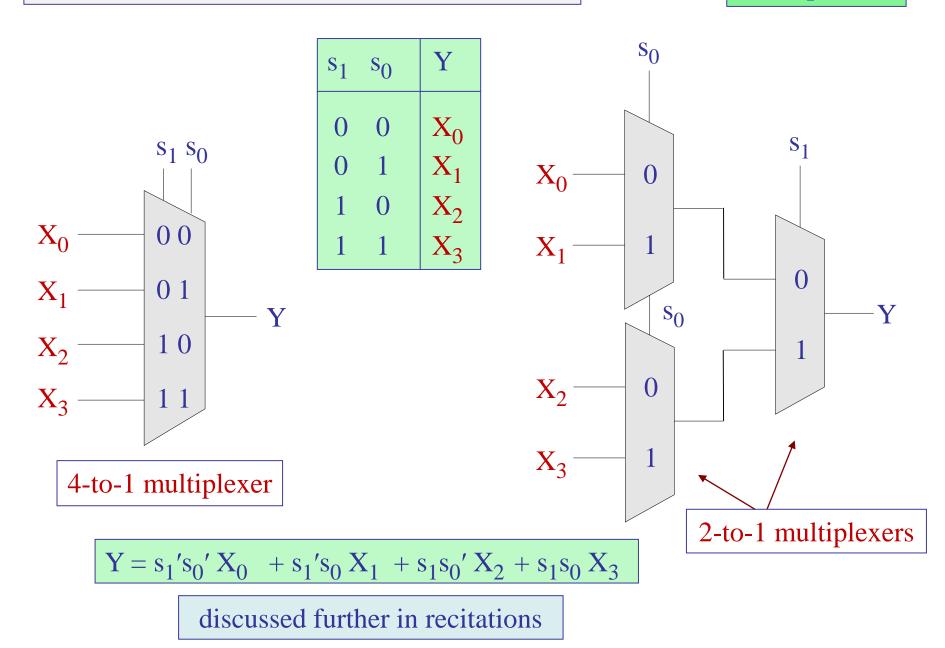
$$Y = s_1' s_0' X_0 + s_1' s_0 X_1 + s_1 s_0' X_2 + s_1 s_0 X_3$$

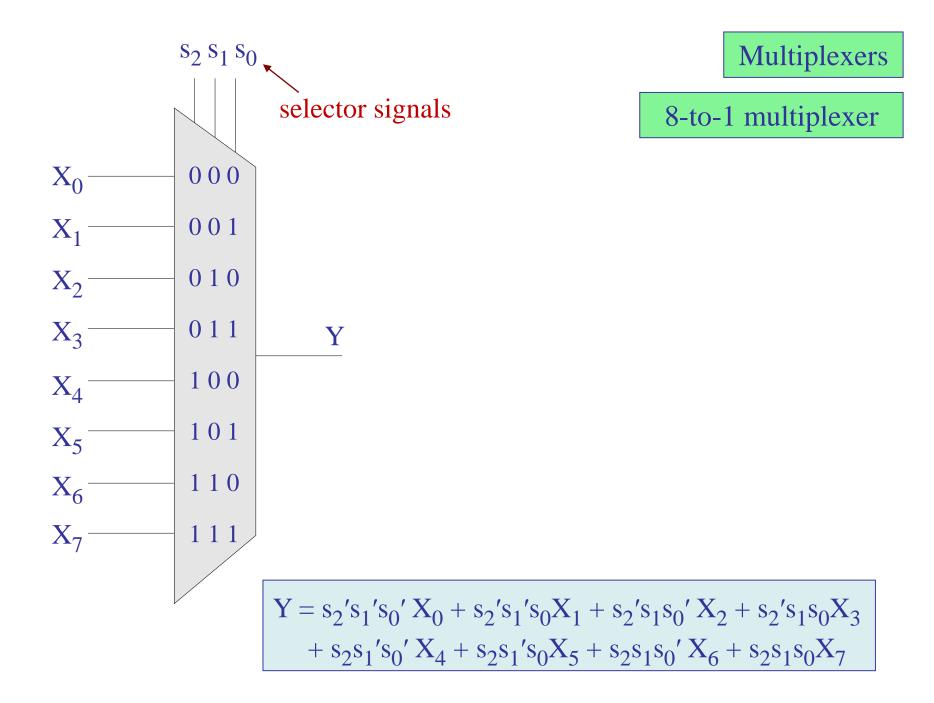



Multiplexers

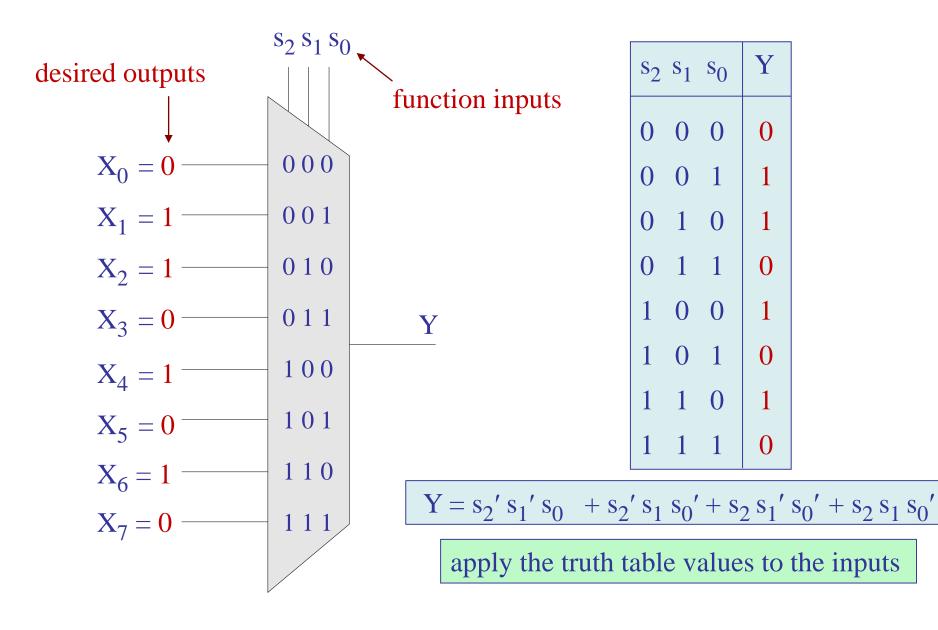
can also have an enable input

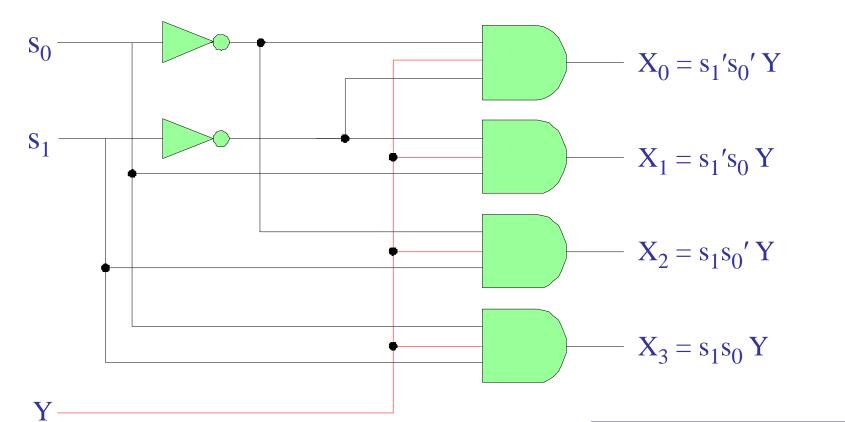
4-to-1 multiplexer gate-level realization



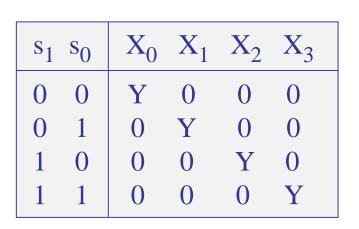

multiplexer realization with decoders

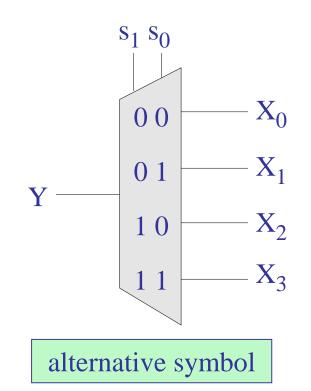
realizing larger multiplexers from smaller ones


Multiplexers



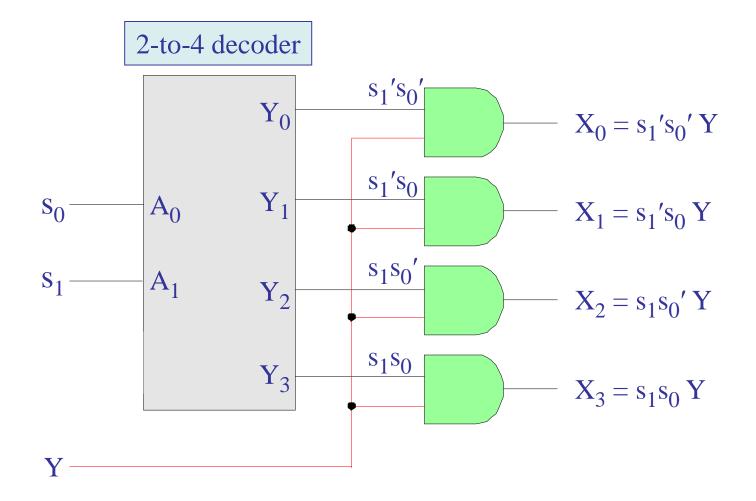
realizing combinational functions with multiplexers


Multiplexers



s ₁	s ₀	X ₀	X ₁	X ₂	X ₃
0	0	Y	0	0	0
0	1	0	Y	0	0
1	0	0	0	Y	0
1	1	0	0	0	Y

Demultiplexers


demultiplexer truth table

can also have an "enable" input

demultiplexer realization with decoders

Demultiplexers

