
Rutgers University

School of Engineering

Fall 2022

332:231 – Digital Logic Design

Sophocles J. Orfanidis

ECE Department

orfanidi@rutgers.edu

Unit 4 – decoders, encoders, multiplexers, demultiplexers

1. Introduction to DLD, Verilog HDL, MATLAB/Simulink

2. Number systems

3. Analysis and synthesis of combinational circuits

4. Decoders/encoders, multiplexers/demultiplexers

5. Arithmetic systems, comparators, adders, multipliers

6. Sequential circuits, latches, flip-flops

7. Registers, shift registers, counters, LFSRs

8. Finite state machines, analysis and synthesis

Text: J. F. Wakerly, Digital Design Principles and Practices, 5/e, Pearson, 2018

additional references on Canvas Files > References

Course Topics

This unit has two parts:

1 .Digital design practices (Wakerly, Ch. 4), provides an overview of

some conventions used in practice, such as, block diagrams, gate

symbols, signal naming conventions, using active-high vs. active-low

levels, bubble-to-bubble designs, layouts and schematics, circuit

timing, timing diagrams, and propagation delays.

2. Basic combinational components (Wakerly, Ch. 6 & 7), that are

commonly used in practice, such as, read-only-memories (ROMs),

decoders, encoders, three-state buffers, priority encoders, multiplexers

and demultiplexers, realizing arbitrary combinational functions with

ROMs, decoders, and multiplexers.

Comparators are discussed in Sect. 7-4, and in unit-5 of lecture notes.

Unit-4 Contents:

Part 1 – Digital design practices

1. Block diagrams, gate symbols

2. Signal names, active-high, active-low levels

3. Bubble-to-bubble logic design

4. Layouts and schematics

5. Circuit timing, timing diagrams, propagation delays

Part 2 – Basic combinational components

6. ROMs

7. Decoders

8. Realizing arbitrary combinational functions with decoders

9. Encoders

10. Three-state buffers

Contents, continued:

11. Priority encoders

12. Multiplexers

13. Realizing arbitrary combinational functions with multiplexers

14. Demultiplexers

15. Realizing multiplexers and demultiplexers with decoders

Part 1 – Digital Design Practices

(Wakerly, Ch.4)

block diagram example

block diagram example

buses

gate symbols

Figure 4-4. Equivalent gate symbols under the De Morgan theorem

gate symbols

Table 4-1. Each line shows a different naming convention for active levels

signal names, active-high, active-low levels

Figure 4-5. Logic symbols.

(a) active-high AND, OR, and a larger-scale logic element

(b) the same elements with active-low inputs and outputs

active levels for pins

Figure 4-6. Four ways of obtaining an AND function.

(a) AND gate;

(b) NAND gate;

(c) NOR gate;

(d) OR gate

active levels for pins

(A ∙ B)ʹ A + B

Bʹ

Aʹ

Bʹ

Aʹ

B

A

B

AA ∙ B

(A + B)ʹ

Aʹ ∙ Bʹ

active-high inputs active-low inputs

Figure 4-6. Four ways of obtaining an OR function.

(a) OR gate;

(b) NOR gate;

(c) NAND gate;

(d) AND gate

active levels for pins

(A+B)ʹ A ∙ B

Bʹ

Aʹ

Bʹ

Aʹ

B

A

B

AA+B

Aʹ + Bʹ

(A ∙ B)ʹ

active-high inputs active-low inputs

Figure 4-8. Alternative symbols.

(a, b) Inverters

(c, d) Noninverting buffers

active levels for pins

A A A Aʹ AʹAʹA Aʹ

Figure 4-9. Constant 0 and 1 inputs for unused inputs.

(a) with larger-scale logic element

(b) with individual gates

active levels for pins

Figure 4-10. Many ways to GO.

(a) Active-high inputs and output

(b) Active-high inputs, active-low output

(c) Active-low inputs, active-high output

(d) Active-low inputs and output

active levels for pins

Figure 4-1.1 Two more ways to GO, with mixed input levels.

(a) with an AND gate

(b) with a NOR gate

active levels for pins

bubble-to-bubble logic design

Figure 4-12. Two-Input Multiplexer.

(a) cryptic logic diagram

(b) proper logic diagram with named active levels

bubble-to-bubble logic design

(AS)’

(BS’)’ ((AS)’(BS’)’)’

= SA + S’B

SA + S’B

Figure 4-13. Another properly drawn logic diagram

bubble-to-bubble logic design

READY = (READY_L)’

REQUEST = (REQUEST_L)’

LOCK = (LOCK_L)’

ENABLE = (ENABLE_L)’

Figure 4-15. Flat schematic structure

layouts and schematics

Figure 4-16. Hierarchical schematic structure

layouts and schematics

Figure 4-17

Examples of buses

layouts and schematics

Figure 4-18. Schematic diagram for a circuit using several SSI parts

layouts and schematics

X = A ∙ B_L + A_L ∙ B

Y = A_L ∙ C + B ∙ C

quad 2-input NAND gate

inverter gates

Figure 4-19. Timing diagrams for a combinational circuit.

(a) Block diagram of circuit

(b) Causality, propagation delay

(c) Minimum and maximum delays

circuit timing

Table 4-2. Propagation delay in nanoseconds

of selected CMOS SSI parts

circuit timing

circuit timing

Table 4-3. Propagation delay

in nanoseconds of selected

CMOS MSI parts

Figure X4.11 circuit timing

solution

circuit timingFigure X4.15

solution

circuit timingFigure X4.18

solution

Read-only-memories (ROMs), and realizations of combinational functions

Decoders

Realizing arbitrary combinational functions with decoders

Encoders

Three-state buffers

Priority encoders

Multiplexers

Realizing arbitrary combinational functions with multiplexers

Demultiplexers

Realizing multiplexers and demultiplexers with decoders

Part 2 – Basic Combinational Components

(Wakerly, Ch. 6 & 7)

ROMs

Wakerly Figure 6-14. 2n x b ROM

n inputs b inputs

A read-only-memory (ROM) is a combinational circuit

with n address inputs and b data outputs, so that there are

2n input bit patterns.

ROMs

Wakerly Table 6-1. For example, the truth table of a 2-to-4

decoder with an additional output-polarity control input, shown

below, can be stored in a 23 x 4 or 8x4 ROM

A ROM may be thought of as a “look-up” table for storing

the truth table of an arbitrary combinational circuit that

has n inputs and b outputs.

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

A0 Y3 Y2 Y1 Y0A1 A2

gate-level implementation
I0 D3 D2 D1 D0I1 POL

ROMsWakerly Fig. 6-3. Gate-level implementation of a 2-to-4

decoder with output-polarity control (see p.54 for derivations)

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

A0 Y3 Y2 Y1 Y0A1 A2

recall the XOR properties

0 Y = Y

1 Y = Yʹ

Y0 = A2ʹ  (A1ʹA0ʹ)

Y1 = A2ʹ  (A1ʹA0)

Y2 = A2ʹ  (A1A0ʹ)

Y3 = A2ʹ  (A1A0)

DecodersA decoder detects a particular code or bit pattern on

its input and passes (decodes) that information to its

output.

Figure 6-14. Decoder circuit structure

examples to be discussed

1. BCD to 7-segment display

2. n-to-2n binary decoder

3. 2n-to-n binary encoder

4. Priority encoders

Wakerly / Fig.6-12 – Typical decoder application in a computer

2-to-4 binary decoder

DecodersSome decoder application examples

Figure 6-23 Seven-segment LED display.

(a) segment identification

(b) decimal digits

BCD to seven-segment LED display decoder

applications: digital clocks & watches

calculator & appliance displays

digital instrumentation displays

digital counters, kitchen timers

Decoders

a

b

c

d

e

f

g

light-emitting diodebinary-coded decimal

Decoders

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

g

don’t care entries,

but incorrect for hex

A B C D

hex

A

b

C

d

E

F

Decoders

a

b

c

d

e

f

g

will be explored

further in recitation

exercises

see p.73-79 for details

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

a

b

c

d

e

f

g

a

b

c

d

e

f

g

0

1

2

3

4

5

6

7

8

9

decimal-to-BCD BCD-to-7 segment

7-segment LED

encoder decoder

display

BCD to seven-segment display encoder/decoder system

A

B

C

D

A

B

C

D

MSB

LSB

LED

signals0 0 0 0 0

3 0 0 1 1

5 0 1 0 1

7 0 1 1 1

9 1 0 0 1

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

A

B

C

D

a

b

c

d

e

f

g

a

b

c

d

e

f

g

0

1

2

3

4

5

6

7

8

9

decimal-to-BCD BCD-to-7 segment

7-segment LED

encoder decoder

display

BCD to seven-segment display encoder/decoder system

1

0

0

1

1

1

1

0

1

0

1

example:

displaying the number 9

A

B

C

D

MSB

LSB

0 0 0 0 0

3 0 0 1 1

5 0 1 0 1

7 0 1 1 1

9 1 0 0 1

a

b

c

d

e

f

g

A

B

C

D

a

b

c

d

e

f

g

7-segment LED

BCD decoder

display

e = Bʹ Dʹ + CDʹ

f = A + Cʹ Dʹ + B Cʹ + B Dʹ

d = Bʹ Dʹ + CDʹ + Bʹ C + B Cʹ D

c = B + Cʹ + D

a = A + C + (B  D) ʹ

b = Bʹ + (C  D) ʹ

g = A + (B  C) + C Dʹ

to be derived in recitations

see the following link for the case of

7-segment-hex-decoder

MSB

LSB

alternative, d = Bʹ Dʹ + CDʹ + Bʹ C + B Cʹ D + A

https://electronics-fun.com/7-segment-hex-decoder/

n A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 0 0 1 1

10 1 0 1 0 x x x x x x x

11 1 0 1 1 x x x x x x x

12 1 1 0 0 x x x x x x x

13 1 1 0 1 x x x x x x x

14 1 1 1 0 x x x x x x x

15 1 1 1 1 x x x x x x x

don’t care entries

a

b

c

d

e

f

g

BCD decoder truth table

MSB LSB

if 9 has only the e segment off, then use, d = Bʹ Dʹ + CDʹ + Bʹ C + B Cʹ D + A

n A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 0 0 1 1

10 1 0 1 0 1 1 0 1 1 1 1

11 1 0 1 1 1 1 1 1 0 1 1

12 1 1 0 0 1 1 1 0 0 1 1

13 1 1 0 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 1 1 1 1 1

15 1 1 1 1 1 1 1 0 0 1 1

actual truth table

why aren’t these don’t

care entries all 1’s ?

a

b

c

d

e

f

g

MATLAB code

and in recitation solutions

MSB LSB

n = (0:15)';

[A,B,C,D] = a2d(n,4);

a = A | C | ~xor(B,D);

b = ~B | ~xor(C,D);

c = B | ~C | D;

d = (~B & ~D) | (C & ~D) | (B & ~C & D) | (~B & C);

% d = (~B & ~D) | (C & ~D) | (B & ~C & D) | (~B & C) | A;

e = (~B & ~D) | (C & ~D);

f = A | (B & ~C) | (~C & ~D) | (B & ~D);

g = A | xor(B,C) | (C & ~D);

[n, A, B, C, D, a, b, c, d, e, f, g] % truth table

e = Bʹ Dʹ + CDʹ

f = A + Cʹ Dʹ + B Cʹ + B Dʹ

d = Bʹ Dʹ + CDʹ + Bʹ C + BCʹ D

c = B + Cʹ + D

a = A + C + (B  D) ʹ

b = Bʹ + (C  D) ʹ

g = A + B  C + C Dʹ

alternative version

for representing the

digit 9

CD

AB

00 01 11 10

00

01

11

10

1

1

1

1

1

x

x

x

x

x

1

x

CD

AB

00 01 11 10

00

01

11

10

1

1

1

1

1

1

1

x

x

x

x

1

x

1

x

c = B + Cʹ + D d = Bʹ Dʹ + CDʹ + Bʹ C + BCʹ D

Why aren’t all don’t care entries equal to 1 even though we take

them as 1 in simplifying the K-maps?

Answer: Because in cases (b, c, d, e) not all of the don’t care entries

were used in the simplification, whereas in cases (a, f, g), all of them

were used and they are indeed equal to 1 in the computed truth table

not used

n-to-2n binary decoders Decoders

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 02-to-4 decoder

3-to-8 decoder

in out in out

called one-hot encoding

A0 Y3 Y2 Y1 Y0
A1

one-hot encoding

realizes all minterms

(explained below)

bit output

n-to-2n binary decoders Decoders

A0

A1

Y0

Y1

Y2

Y3

2-to-4 decoder
Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-to-8 decoder

A0

A1

A2

only one of the Y-output bits is on

(selected) for each input pattern

Decoders

A0

A1

Y0

Y1

Y2

Y3

2-to-4 decoder

1, 0, 1, 0

1, 1, 0, 0

0, 0, 0, 1

0, 0, 1, 0

0, 1, 0, 0

1, 0, 0, 0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

A0 Y3 Y2 Y1 Y0
A1

4-to-16 decoder

Decoders
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

in out

Table 6-3. Truth table for a 2-to-4 binary decoder with enable

don’t care

entries

Decoders

0
\\

1

2

3

Figure 6-15. 2-to-4 decoder with enable

(a) Inputs and outputs

(b) Logic diagram

ʹ ʹ

Decoders

Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0
ʹ ʹ

A0

A1

EN

Y0

Y1

Y2

Y3

all possible minterms

2-to-4 decoder
Decoders

when EN=1

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

row A2A1A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 minterms

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

2 0 1 0 0 0 0 0 0 1 0 0

3 0 1 1 0 0 0 0 1 0 0 0

4 1 0 0 0 0 0 1 0 0 0 0

5 1 0 1 0 0 1 0 0 0 0 0

6 1 1 0 0 1 0 0 0 0 0 0

7 1 1 1 1 0 0 0 0 0 0 0

truth table of 3-to-8 decoder

Decoders

one-hot encoding

realizes all 8 minterms

MSB LSB

one-hot encoding

A2ʹA1ʹA0ʹ

A2ʹA1ʹA0

A2ʹA1A0ʹ

A2ʹA1A0

A2A1ʹA0ʹ

A2A1ʹA0

A2A1A0ʹ

A2A1A0

Decoders

% generating the truth table

[A1,A0] = a2d(0:3,2);

Y3 = A1 & A0;

Y2 = A1 & ~A0;

Y1 = ~A1 & A0;

Y0 = ~A1 & ~A0;

[A1, A0, Y3, Y2, Y1, Y0]

% 0 0 0 0 0 1

% 0 1 0 0 1 0

% 1 0 0 1 0 0

% 1 1 1 0 0 0

truth table of 2-to-4 decoder

Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0

Decoders

% generating the truth table

[A2,A1,A0] = a2d(0:7,3);

Y7 = A2 & A1 & A0;

Y6 = A2 & A1 & ~A0;

Y5 = A2 & ~A1 & A0;

Y4 = A2 & ~A1 & ~A0;

Y3 = ~A2 & A1 & A0;

Y2 = ~A2 & A1 & ~A0;

Y1 = ~A2 & ~A1 & A0;

Y0 = ~A2 & ~A1 & ~A0;

[A2,A1,A0,Y7,Y6,Y5,Y4,Y3,Y2,Y1,Y0]

truth table of 3-to-8 decoder

3-to-8 decoder

Decoders

all possible A,B,C minterms

Realizing arbitrary combinational functions with decoders

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A0

A1

A2

LSB

MSB

A2ʹA1ʹA0ʹ

A2ʹA1ʹA0

A2ʹA1A0ʹ

A2ʹA1A0

A2A1ʹA0ʹ

A2A1ʹA0

A2A1A0ʹ

A2A1A0

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

DecodersDecoders can implement arbitrary combinational functions,

because the decoder outputs are all possible minterms,

similar to using ROMs or look-up-tables in FPGAs.

Example:

F = ABC(2,4,7)

F = A2ʹA1A0ʹ + A2A1ʹA0ʹ + A2A1A0

F

A0

A1

A2

A2ʹA1A0ʹ

A2A1ʹA0ʹ

A2A1A0

Decoders

Figure 6-16. Logic symbol for the 74x138 3-to-8 decoder.

(a) conventional symbol

(b) default signal names associated with external pins

Decoders

Figure 6-17. Logic diagram for the 74x138 3-to-8 decoder

active-low

outputs

Decoders

Figure 6-17. Truth table of the 74x138 3-to-8 decoder

active-low outputs
MSB

Decoders

realizing larger decoders from

smaller ones

Fig. 6-19. Building a 5-to-32

decoder using five 3-to-8

decoders

DecodersMore generally, it is not necessary to use all of the

outputs of a decoder, or even to decode all input

combinations (e.g., as in BCD-to-7 segment displays), or

that the input combinations are in binary order.

Here is another example of a shaft-position decoder using Gray coding

see Wakerly, Ch. 2 & Ch. 6

Encoders

Figure 6-24. Binary encoder.

(a) general structure

(b) 8-to-3 encoder

encoding operation

decoding operation

2n -to-n binary encoders

perform the opposite function of

n-to-2n binary decoders

(block diagram to be explained below)

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

Y1 + Y3 = A1ʹA0 + A1A0 = (A1ʹ + A1) A0 = A0

Y2 + Y3 = A1A0ʹ + A1A0 = (A0ʹ + A0) A1 = A1

A0

A1

Y0

Y1

Y2

Y3

A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

2-to-4 decoder

Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0

A0 = Y1 + Y3

A1 = Y2 + Y3

Encoders

see p.81, for full truth-table and a problem with encoders

A0

A1

Y0

Y1

Y2

Y3

Encoders

A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

2-to-4 decoder

Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0

A0 = Y1 + Y3

A1 = Y2 + Y3

Y0

Y1

Y2

Y3

Y0

Y1

Y2

Y3

A0

A1

A0

A1

decoder

encoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-to-8 decoder

A0

A1

A2

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

8-to-3 encoder

A0

A1

A2

Encoders

truth table

MSB

LSB

MSB

LSB

row Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0

0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0 0 1

2 0 0 0 0 0 1 0 0 0 1 0

3 0 0 0 0 1 0 0 0 0 1 1

4 0 0 0 1 0 0 0 0 1 0 0

5 0 0 1 0 0 0 0 0 1 0 1

6 0 1 0 0 0 0 0 0 1 1 0

7 1 0 0 0 0 0 0 0 1 1 1

truth table of 8-to-3 encoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

8-to-3 encoder

A0

A1

A2

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

MSB

LSB

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-to-8 decoder

A0

A1

A2

A2ʹA1ʹA0ʹ

A2ʹA1ʹA0

A2ʹA1A0ʹ

A2ʹA1A0

A2A1ʹA0ʹ

A2A1ʹA0

A2A1A0ʹ

A2A1A0

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

inverting

MSB

LSB

Encoders

Y1 + Y3 + Y5 + Y7 = A2ʹA1ʹA0 + A2ʹA1A0 + A2A1ʹA0 + A2A1A0

= A2ʹ(A1ʹ + A1)A0 + A2(A1ʹ + A1)A0

= A2ʹA0 + A2A0 = (A2ʹ + A2)A0 = A0

alternatively, we have,

Y1 + Y3 + Y5 + Y7 = A2ʹA1ʹA0 + A2ʹA1A0 + A2A1ʹA0 + A2A1A0

= (A2ʹA1ʹ + A2ʹA1 + A2A1ʹ + A2A1) A0

= (A2ʹ + A2)(A1ʹ + A1) A0 = A0

demonstration of simplification steps:

will be explored further in recitation exercises

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A0

A1

A2

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

8-to-3 encoder

A0

A1

A2

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

Encoders

MSB

LSB

decimal-to-BCD encoder Encoders

inputs BCD code

n Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A3 A2 A1 A0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 0 0 0 1 0 0 0 0 1 0

3 0 0 0 0 0 0 1 0 0 0 0 0 1 1

4 0 0 0 0 0 1 0 0 0 0 0 1 0 0

5 0 0 0 0 1 0 0 0 0 0 0 1 0 1

6 0 0 0 1 0 0 0 0 0 0 0 1 1 0

7 0 0 1 0 0 0 0 0 0 0 0 1 1 1

8 0 1 0 0 0 0 0 0 0 0 1 0 0 0

9 1 0 0 0 0 0 0 0 0 0 1 0 0 1

one-hot encoding of the ten integers 0,1,…,9

see p.75, on how to generate such table with MATLAB

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

A0

A1

A2

A3

A0 = Y1 + Y3 + Y5 + Y7 + Y9

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

A3 = Y8 + Y9

Encodersdecimal-to-BCD encoder

see p.75, for MATLAB code

and p.76, for gate-level implementation

and p.77, for chip-level realization

and p.41 & 78, for a complete system

MSB

LSB

0

1

2

3

4

5

6

7

8

9

one-hot encoding

Encoders

% decimal-to-BCD truth table on p.73

Y = fliplr(eye(10));

Y9 = Y(:,1); Y8 = Y(:,2); Y7 = Y(:,3);

Y6 = Y(:,4); Y5 = Y(:,5); Y4 = Y(:,6);

Y3 = Y(:,7); Y2 = Y(:,8); Y1 = Y(:,9);

Y0 = Y(:,10);

A3 = Y8 | Y9;

A2 = Y4 | Y5 | Y6 | Y7;

A1 = Y2 | Y3 | Y6 | Y7;

A0 = Y1 | Y3 | Y5 | Y7 | Y9;

[Y,A3,A2,A1,A0] % print table

decimal-to-BCD encoder

A0 = Y1 + Y3 + Y5 + Y7 + Y9

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

A3 = Y8 + Y9

Encodersdecimal-to-BCD encoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

A0 = Y1 + Y3 + Y5 + Y7 + Y9

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

A3 = Y8 + Y9

will be explored further in recitation exercises

Encoders

BCD to seven-segment display encoder/decoder system

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

a

b

c

d

e

f

g

a

b

c

d

e

f

g

0

1

2

3

4

5

6

7

8

9

decimal-to-BCD BCD-to-7 segment

7-segment LED

encoder decoder

display

A

B

C

D

A

B

C

D

LED

signals

MSB

LSB

0 0 0 0 0

3 0 0 1 1

5 0 1 0 1

7 0 1 1 1

9 1 0 0 1

Encodersthree-state buffers

Figure 7-1. Various three-state buffers

(a,b) non-inverting

(c,d) inverting

(a,c) active-high enable

(b,d) active-low enable

E X Y

0 0 Z

0 1 Z

1 0 0

1 1 1

high-impedance

state,

with X effectively

disconnected

from Y

E

X Y

truth table for (a)

Encodersthree-state buffers

Figure 7-2. Eight sources sharing a single three-state party line

normally, one cannot connect the outputs like that, however, here,

only one of the outputs is active at a time, the others being

disabled by going into their high-impedance state

A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

A0 = Y1 + Y3

A1 = Y2 + Y3

Y0

Y1

Y2

Y3

A0

A1

Y3 Y2 Y1 Y0 A1 A0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 1

0 1 1 1 1 1

1 0 0 0 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1

problem with encoders

when multiple inputs

are asserted

Priority encoders

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

A0 = Y1 + Y3

A1 = Y2 + Y3

the problem can be resolved by making

the encoder inputs unique, i.e., mutually exclusive,

so that none of the other entries of the full truth table can occur,

this can be accomplished by prioritizing the inputs and sending

the prioritized signals as inputs to the encoder

Priority encoders

H3 = Y3

H2 = Y2 Y3ʹ

H1 = Y1 Y2ʹ Y3ʹ

H0 = Y0 Y1ʹ Y2ʹ Y3ʹ

we assign highest priority to the input Y3, and

then to Y2, Y1, Y0, and we construct the following

high-priority signals, H3, H2, H1, H0, and then

pass them to an ordinary 4-to-2 encoder to

generate the encoded A1, A0 outputs

if Y3 is not ON, then Y2 has next priority

if neither Y3 nor Y2 are ON, then Y1 has next priority

and if none of Y3,Y2,Y1 are ON, then Y0 has next priority

Y0

Y1

Y2

Y3

H0

H1

H2

H3

A0 = H1 + H3

A1 = H2 + H3

Y-to-H

mapping

ordinary

4-to-2

encoder

Priority encoders

Y0

Y1

Y2

Y3

V

H0

H1

H2

H3

Y-to-H

mapping

ordinary

4-to-2

encoder

A0 = H1 + H3

A1 = H2 + H3

it is common also to define the “validation” signal

V = Y3 + Y2 + Y1 + Y0

that is asserted if any of the inputs is ON,

note that the Wakerly text uses active-low logic

and uses the complement of V, called IDLE,

IDLE = Vʹ = Y3ʹ Y2ʹ Y1ʹ Y0ʹ

Priority encoders

H3 = Y3

H2 = Y2 Y3ʹ

H1 = Y1 Y2ʹ Y3ʹ

H0 = Y0 Y1ʹ Y2ʹ Y3ʹ

further simplifications

Y0

Y1

Y2

Y3

H0

H1

H2

H3

A0 = H1 + H3

A1 = H2 + H3

Y-to-H

mapping

ordinary

4-to-2

encoder

A0 = H1 + H3 = Y3 + Y1 Y2ʹ Y3ʹ = (Y3 + Y3ʹ) (Y3 + Y1 Y2ʹ) = Y3 + Y1 Y2ʹ

A1 = H2 + H3 = Y3 + Y2 Y3ʹ = (Y3 + Y3ʹ) (Y3 + Y2) = Y3 + Y2

using the distributive property, A + BC = (A+B)(A+C)

Priority encoders

gate-level realization of a 4-to-2 priority encoder

Y0

Y1

Y2

Y3

V

A0 = Y3 + Y1 Y2ʹ

A1 = Y3 + Y2

we may verify that this works as expected by computing the

full truth table of the Y-inputs, H-inputs, and A-outputs, shown

on the next page, and computed with MATLAB on p.89

Priority encoders

Y3 Y2 Y1 Y0 H3 H2 H1 H0 A1 A0 V

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 0 1 1

0 0 1 1 0 0 1 0 0 1 1

0 1 0 0 0 1 0 0 1 0 1

0 1 0 1 0 1 0 0 1 0 1

0 1 1 0 0 1 0 0 1 0 1

0 1 1 1 0 1 0 0 1 0 1

1 0 0 0 1 0 0 0 1 1 1

1 0 0 1 1 0 0 0 1 1 1

1 0 1 0 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 1 1

1 1 0 0 1 0 0 0 1 1 1

1 1 0 1 1 0 0 0 1 1 1

1 1 1 0 1 0 0 0 1 1 1

1 1 1 1 1 0 0 0 1 1 1

H-outputs

are exclusive, and

correspond to a plain

4-to-2 binary encoder

4-to-2 encoder

H3 H2 H1 H0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

H0
H1
H2
H3

A0
A1

Priority encoders

ʹ

Y3 Y2 Y1 Y0 H3 H2 H1 H0 A1 A0 V

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1

0 0 1 x 0 0 1 0 0 1 1

0 1 x x 0 1 0 0 1 0 1

1 x x x 1 0 0 0 1 1 1

H-outputs

are exclusive, and

correspond to a plain

4-to-2 binary encoder

4-to-2 encoder

H3 H2 H1 H0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

H0
H1
H2
H3

A0
A1

compressed truth table

if Y3 is ON, then, A1A0 = 11, regardless of the

values of Y2 Y1 Y0

if Y2 is ON, but Y3 is OFF, then, A1A0 = 10,

regardless of the values of Y1 Y0

if Y1 is ON, but Y2 and Y3 are OFF, then,

A1A0 = 01, regardless of the values of Y0

if onlyY0 is ON, then, A1A0 = 00

Priority encoders

% 4-to-2 priority encoder truth table

[Y3,Y2,Y1,Y0] = a2d(0:15, 4); % inputs

H3 = Y3; % intermediate

H2 = Y2 & (~Y3); % inputs to

H1 = Y1 & (~Y2) & (~Y3); % plain 4-to-2

H0 = Y0 & (~Y1) & (~Y2) & (~Y3); % binary encoder

A1 = H2 | H3; % outputs

A0 = H1 | H3;

% A1 = Y2 | Y3; % alternative

% A0 = (Y1 & (~Y2)) | Y3; % calculation

V = Y0 | Y1 | Y2 | Y3; % valid output

[Y3,Y2,Y1,Y0,H3,H2,H1,H0,A1,A0,V] % truth table

Priority encoders

ʹ

the construction of higher order priority encoders is straightforward.

For example, in the 8-to-3 case, the high-priority signals are constructed

as follows, assigning higher to lower priority in the order of,

Y7, Y6, Y5, Y4, Y3, Y2, Y1, Y0,

H7 = Y7

H6 = Y6 Y7ʹ

H5 = Y5 Y6ʹ Y7ʹ

H4 = Y4 Y5ʹ Y6ʹ Y7ʹ

H3 = Y3 Y4ʹ Y5ʹ Y6ʹ Y7ʹ

H2 = Y2 Y3ʹ Y4ʹ Y5ʹ Y6ʹ Y7ʹ

H1 = Y1 Y2ʹ Y3ʹ Y4ʹ Y5ʹ Y6ʹ Y7ʹ

H0 = Y0 Y1ʹ Y2ʹ Y3ʹ Y4ʹ Y5ʹ Y6ʹ Y7ʹ

V = Y0 + Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7

8-to-3 priority encoder
standard 8-to-3 encoder

from p.72

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

Priority encoders
8-to-3 priority encoder

H0

H1

H2

H3

H4

H5

H6

H7

A0 = H1 + H3 + H5 + H7

A1 = H2 + H3 + H6 + H7

A2 = H4 + H5 + H6 + H7

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y-to-H

mapping

ordinary

8-to-3

encoder

Priority encoders

74148 chip family

active-low

E

Multiplexers

Y = sʹ X0 + s X1

s Y

0 X0

1 X1

X0

X1

s

0

1

simplified truth table
alternative symbol

2-to-1 multiplexer

Y

X0

X1

0

1

s

additional “enable” input

0

1

Multiplexers

X0 X1

Y

s

2-to-1 multiplexer

gate-level realization

Y = sʹ X0 + s X1

Multiplexers

4-to-1 multiplexer

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

s1 s0 Y

0 0 X0

0 1 X1

1 0 X2

1 1 X3

simplified truth table

alternative symbol

X0

X1

X2

X3

s1 s0

Y

0 0

0 1

1 0

1 1

can also have an enable input

Multiplexers

s0

s1

Y

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

X0 X1 X2 X3

4-to-1 multiplexer

gate-level realization

A0

A1

Y0

Y1

Y2

Y3

2-to-4 decoder

s0

s1

X0

X1

X2

X3

Y

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

Multiplexersmultiplexer realization with decoders

s1ʹs0ʹ

s1ʹs0

s1s0ʹ

s1s0

decoder generates all required minterms

s0

X0

X1

X2

X3

Y

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

Multiplexersrealizing larger multiplexers from smaller ones

s0

0

1

0

1

0

1

s1

2-to-1 multiplexers

X0

X1

X2

X3

s1 s0

Y

0 0

0 1

1 0

1 1

4-to-1 multiplexer

s1 s0 Y

0 0 X0

0 1 X1

1 0 X2

1 1 X3

discussed further in recitations

Multiplexers

8-to-1 multiplexer

Y

X0

X1

X2

X3

X4

X5

X6

X7

s2 s1 s0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

selector signals

Y = s2ʹs1ʹs0ʹ X0 + s2ʹs1ʹs0X1 + s2ʹs1s0ʹ X2 + s2ʹs1s0X3

+ s2s1ʹs0ʹ X4 + s2s1ʹs0X5 + s2s1s0ʹ X6 + s2s1s0X7

Y

Y = s2ʹ s1ʹ s0 + s2ʹ s1 s0ʹ + s2 s1ʹ s0ʹ + s2 s1 s0ʹ

realizing combinational functions with multiplexers

X0 = 0

X1 = 1

X2 = 1

X3 = 0

X4 = 1

X5 = 0

X6 = 1

X7 = 0

s2 s1 s0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

s2 s1 s0 Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Multiplexers

apply the truth table values to the inputs

function inputs
desired outputs

Y

s0

s1

X0 = s1ʹs0ʹ Y

X1 = s1ʹs0 Y

X2 = s1s0ʹ Y

X3 = s1s0 Y

Demultiplexers

s1 s0 X0 X1 X2 X3

0 0 Y 0 0 0

0 1 0 Y 0 0

1 0 0 0 Y 0

1 1 0 0 0 Y

Demultiplexers

s1 s0 X0 X1 X2 X3

0 0 Y 0 0 0

0 1 0 Y 0 0

1 0 0 0 Y 0

1 1 0 0 0 Y

demultiplexer truth table

alternative symbol

X0

X1

X2

X3

Y

can also have an “enable” input

0 0

0 1

1 0

1 1

s1 s0

X0 = s1ʹs0ʹ Y

X1 = s1ʹs0 Y

X2 = s1s0ʹ Y

X3 = s1s0 Y

Y

s0

s1

2-to-4 decoder

A0

A1

Y0

Y1

Y2

Y3

Demultiplexersdemultiplexer realization with decoders

E

s1ʹs0ʹ

s1ʹs0

s1s0ʹ

s1s0

