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2. Number systems
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This unit has two parts:

1 .Digital design practices (Wakerly, Ch. 4), provides an overview of 

some conventions used in practice, such as, block diagrams, gate 

symbols, signal naming conventions, using active-high vs. active-low 

levels, bubble-to-bubble designs, layouts and schematics, circuit 

timing, timing diagrams, and propagation delays.

2. Basic combinational components (Wakerly, Ch. 6 & 7), that are 

commonly used in practice, such as, read-only-memories (ROMs), 

decoders, encoders, three-state buffers, priority encoders, multiplexers 

and demultiplexers, realizing arbitrary combinational functions with 

ROMs, decoders, and multiplexers.

Comparators are discussed in Sect. 7-4, and in unit-5 of lecture notes.



Unit-4 Contents:

Part 1 – Digital design practices

1. Block diagrams, gate symbols

2.  Signal names, active-high, active-low levels

3. Bubble-to-bubble logic design

4. Layouts and schematics

5. Circuit timing, timing diagrams, propagation delays

Part 2 – Basic combinational components

6.  ROMs

7. Decoders

8. Realizing arbitrary combinational functions with decoders

9. Encoders

10. Three-state buffers



Contents, continued:

11. Priority encoders

12. Multiplexers

13. Realizing arbitrary combinational functions with multiplexers

14. Demultiplexers

15. Realizing multiplexers and demultiplexers with decoders



Part 1 – Digital Design Practices

(Wakerly, Ch.4)



block diagram example



block diagram example

buses



gate symbols



Figure 4-4. Equivalent gate symbols under the De Morgan theorem

gate symbols



Table 4-1. Each line shows a different naming convention for active levels

signal names, active-high, active-low levels



Figure 4-5. Logic symbols. 

(a) active-high AND, OR, and a larger-scale logic element

(b) the same elements with active-low inputs and outputs

active levels for pins



Figure 4-6. Four ways of obtaining an AND function. 

(a) AND gate; 

(b) NAND gate; 

(c) NOR gate; 

(d) OR gate

active levels for pins

(A ∙ B)ʹ A + B

Bʹ

Aʹ

Bʹ

Aʹ

B

A

B

AA ∙ B

(A + B)ʹ

Aʹ ∙ Bʹ 

active-high inputs active-low inputs



Figure 4-6. Four ways of obtaining an OR function. 

(a) OR gate; 

(b) NOR gate; 

(c) NAND gate; 

(d) AND gate

active levels for pins

(A+B)ʹ A ∙ B

Bʹ

Aʹ

Bʹ

Aʹ

B

A

B

AA+B

Aʹ + Bʹ

(A ∙ B)ʹ 

active-high inputs active-low inputs



Figure 4-8. Alternative symbols. 

(a, b) Inverters

(c, d) Noninverting buffers

active levels for pins

A A A Aʹ AʹAʹA Aʹ



Figure 4-9. Constant 0 and 1 inputs for unused inputs. 

(a) with larger-scale logic element

(b) with individual gates

active levels for pins



Figure 4-10. Many ways to GO.

(a) Active-high inputs and output

(b) Active-high inputs, active-low output

(c) Active-low inputs, active-high output

(d) Active-low inputs and output

active levels for pins



Figure 4-1.1 Two more ways to GO, with mixed input levels.

(a) with an AND gate

(b) with a NOR gate

active levels for pins



bubble-to-bubble logic design



Figure 4-12.  Two-Input Multiplexer.

(a) cryptic logic diagram

(b) proper logic diagram with named active levels

bubble-to-bubble logic design

(AS)’

(BS’)’ ((AS)’(BS’)’)’

= SA + S’B

SA + S’B



Figure 4-13. Another properly drawn logic diagram

bubble-to-bubble logic design

READY = (READY_L)’

REQUEST = (REQUEST_L)’

LOCK = (LOCK_L)’

ENABLE = (ENABLE_L)’



Figure 4-15. Flat schematic structure

layouts and schematics



Figure 4-16. Hierarchical schematic structure

layouts and schematics



Figure 4-17

Examples of buses

layouts and schematics



Figure 4-18. Schematic diagram for a circuit using several SSI parts

layouts and schematics

X = A ∙ B_L + A_L ∙ B 

Y = A_L ∙ C + B ∙ C 

quad 2-input NAND gate

inverter gates



Figure 4-19. Timing diagrams for a combinational circuit.

(a) Block diagram of circuit

(b) Causality, propagation delay

(c) Minimum and maximum delays

circuit timing



Table 4-2. Propagation delay in nanoseconds 

of selected CMOS SSI parts

circuit timing



circuit timing

Table 4-3. Propagation delay 

in nanoseconds of selected 

CMOS MSI parts



Figure X4.11 circuit timing

solution



circuit timingFigure X4.15

solution



circuit timingFigure X4.18

solution



Read-only-memories (ROMs), and realizations of combinational functions

Decoders

Realizing arbitrary combinational functions with decoders

Encoders

Three-state buffers

Priority encoders

Multiplexers

Realizing arbitrary combinational functions with multiplexers

Demultiplexers

Realizing multiplexers and demultiplexers with decoders

Part 2 – Basic Combinational Components

(Wakerly, Ch. 6 & 7)



ROMs

Wakerly Figure 6-14.   2n x b  ROM

n inputs b inputs

A read-only-memory (ROM) is a combinational circuit 

with n address inputs and b data outputs, so that there are 

2n input bit patterns. 



ROMs

Wakerly Table 6-1.   For example, the truth table of a 2-to-4 

decoder with an additional output-polarity control input, shown 

below, can be stored in a 23 x 4  or 8x4 ROM

A ROM may be thought of as a “look-up” table for storing 

the truth table of an arbitrary combinational circuit that 

has n inputs and b outputs. 

0     0     0        1    1    1    0

0     0     1        1    1    0  1

0     1     0        1    0 1    1

0     1     1        0  1    1    1

1     0     0        0    0    0    1

1     0     1        0    0    1  0

1     1     0        0    1 0    0

1     1     1        1  0    0    0

A0 Y3 Y2 Y1 Y0A1 A2 

gate-level implementation
I0 D3 D2 D1 D0I1 POL 



ROMsWakerly Fig. 6-3.   Gate-level implementation of a 2-to-4 

decoder with output-polarity control (see p.54 for derivations)

0     0     0        1    1    1    0

0     0     1        1    1    0  1

0     1     0        1    0 1    1

0     1     1        0  1    1    1

1     0     0        0    0    0    1

1     0     1        0    0    1  0

1     1     0        0    1 0    0

1     1     1        1  0    0    0

A0 Y3 Y2 Y1 Y0A1 A2 

recall the XOR properties

0 Y = Y

1 Y = Yʹ

Y0 = A2ʹ   (A1ʹA0ʹ)

Y1 = A2ʹ   (A1ʹA0)

Y2 = A2ʹ  (A1A0ʹ)

Y3 = A2ʹ  (A1A0)



DecodersA decoder detects a particular code or bit pattern on 

its input and passes (decodes) that information to its 

output.

Figure 6-14. Decoder circuit structure

examples to be discussed

1. BCD to 7-segment display

2. n-to-2n binary decoder

3. 2n-to-n binary encoder

4. Priority encoders



Wakerly / Fig.6-12 – Typical decoder application in a computer

2-to-4 binary decoder

DecodersSome decoder application examples



Figure 6-23 Seven-segment LED display.

(a) segment identification

(b) decimal digits

BCD to seven-segment LED display decoder

applications:  digital clocks & watches 

calculator & appliance displays  

digital instrumentation displays 

digital counters, kitchen timers

Decoders

a

b

c

d

e

f

g

light-emitting diodebinary-coded decimal



Decoders

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

g

don’t care entries,

but incorrect for hex

A       B      C      D  

hex

A

b

C

d

E

F



Decoders

a

b

c

d

e

f

g

will be explored 

further in recitation 

exercises



see p.73-79 for details

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

a 

b 

c 

d

e

f

g

a

b

c

d

e

f

g

0 

1 

2 

3

4

5

6

7

8

9

decimal-to-BCD BCD-to-7 segment

7-segment LED

encoder decoder

display

BCD to seven-segment display encoder/decoder system

A

B 

C

D

A

B 

C

D

MSB

LSB

LED

signals0   0 0 0 0   

3   0 0 1 1   

5   0 1 0 1   

7   0 1 1 1   

9   1 0 0 1   



Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

A

B 

C

D

a 

b 

c 

d

e

f

g

a

b

c

d

e

f

g

0 

1 

2 

3

4

5

6

7

8

9

decimal-to-BCD BCD-to-7 segment

7-segment LED

encoder decoder

display

BCD to seven-segment display encoder/decoder system

1 

0 

0 

1

1 

1 

1 

0 

1 

0 

1 

example: 

displaying the number 9

A

B 

C

D

MSB

LSB

0   0 0 0 0   

3   0 0 1 1   

5   0 1 0 1   

7   0 1 1 1   

9   1 0 0 1   



a 

b 

c 

d

e

f

g

A

B 

C

D

a

b

c

d

e

f

g

7-segment LED

BCD decoder

display

e = Bʹ Dʹ + CDʹ 

f = A + Cʹ Dʹ + B Cʹ + B Dʹ  

d = Bʹ Dʹ + CDʹ + Bʹ C + B Cʹ D 

c = B + Cʹ + D 

a = A + C + (B  D) ʹ

b = Bʹ  + (C  D) ʹ

g = A + (B  C) + C Dʹ  

to be derived in recitations

see the following link for the case of 

7-segment-hex-decoder

MSB

LSB

alternative, d = Bʹ Dʹ + CDʹ + Bʹ C + B Cʹ D + A 

https://electronics-fun.com/7-segment-hex-decoder/


n   A  B  C  D   a  b  c  d  e  f  g

0   0  0  0  0   1  1  1  1  1  1  0

1   0  0  0  1   0  1  1  0  0  0  0

2   0  0  1  0   1  1  0  1  1  0  1

3   0  0  1  1   1  1  1  1  0  0  1

4   0  1  0  0   0  1  1  0  0  1  1

5   0  1  0  1   1  0  1  1  0  1  1

6   0  1  1  0   1  0  1  1  1  1  1

7   0  1  1  1   1  1  1  0  0  0  0

8   1  0  0  0   1  1  1  1  1  1  1

9   1  0  0  1   1  1  1  0  0  1  1

10   1  0  1  0   x  x x x x x x

11   1  0  1  1   x  x x x x x x

12   1  1  0  0   x  x x x x x x

13   1  1  0  1   x  x x x x x x

14   1  1  1  0   x  x x x x x x

15   1  1  1  1   x  x x x x x x

don’t care entries

a

b

c

d

e

f

g

BCD decoder truth table

MSB LSB

if 9 has only the e segment off, then use,  d = Bʹ Dʹ + CDʹ + Bʹ C + B Cʹ D + A 



n   A  B  C  D   a  b  c  d  e  f  g

0   0  0  0  0   1  1  1  1  1  1  0

1   0  0  0  1   0  1  1  0  0  0  0

2   0  0  1  0   1  1  0  1  1  0  1

3   0  0  1  1   1  1  1  1  0  0  1

4   0  1  0  0   0  1  1  0  0  1  1

5   0  1  0  1   1  0  1  1  0  1  1

6   0  1  1  0   1  0  1  1  1  1  1

7   0  1  1  1   1  1  1  0  0  0  0

8   1  0  0  0   1  1  1  1  1  1  1

9   1  0  0  1   1  1  1  0  0  1  1

10   1  0  1  0   1  1  0  1  1  1  1

11   1  0  1  1   1  1  1  1  0  1  1

12   1  1  0  0   1  1  1  0  0  1  1

13   1  1  0  1   1  0  1  1  0  1  1

14   1  1  1  0   1  0  1  1  1  1  1

15   1  1  1  1   1  1  1  0  0  1  1

actual truth table

why aren’t these don’t 

care entries all 1’s ?

a

b

c

d

e

f

g

MATLAB code 

and in recitation solutions

MSB LSB



n = (0:15)';

[A,B,C,D] = a2d(n,4);

a = A | C | ~xor(B,D);

b = ~B | ~xor(C,D); 

c = B | ~C | D; 

d = (~B & ~D) | (C & ~D) | (B & ~C & D) | (~B & C); 

% d = (~B & ~D) | (C & ~D) | (B & ~C & D) | (~B & C) | A;

e = (~B & ~D) | (C & ~D); 

f = A | (B & ~C) | (~C & ~D) | (B & ~D); 

g = A | xor(B,C) | (C & ~D); 

[n, A, B, C, D, a, b, c, d, e, f, g]       % truth table

e = Bʹ Dʹ + CDʹ 

f = A + Cʹ Dʹ + B Cʹ + B Dʹ  

d = Bʹ Dʹ + CDʹ + Bʹ C + BCʹ D 

c = B + Cʹ + D 

a = A + C + (B  D) ʹ

b = Bʹ  + (C  D) ʹ

g = A + B  C + C Dʹ   

alternative version

for representing the 

digit 9



CD

AB

00 01 11 10

00

01

11

10

1

1

1

1

1

x

x

x

x

x

1

x

CD

AB

00 01 11 10

00

01

11

10

1

1

1

1

1

1

1

x

x

x

x

1

x

1

x

c = B + Cʹ + D d = Bʹ Dʹ + CDʹ + Bʹ C + BCʹ D 

Why aren’t all don’t care entries equal to 1 even though we take 

them as 1 in simplifying the K-maps?

Answer: Because in cases (b, c, d, e) not all of the don’t care entries 

were used in the simplification, whereas in cases (a, f, g), all of them 

were used and they are indeed equal to 1 in the computed truth table

not used



n-to-2n binary decoders Decoders

0    0      0    0    0    1

0    1      0    0    1  0

1    0      0    1 0    0

1    1      1  0    0    0

0  0  0     0   0   0   0   0   0   0   1

0  0  1     0   0   0   0   0   0   1 0

0  1  0     0   0   0   0   0   1 0   0

0  1  1     0   0   0   0   1 0   0   0

1  0  0     0   0   0   1 0   0   0   0

1  0  1     0   0   1 0   0   0   0   0

1  1  0     0   1 0   0   0   0   0   0

1  1  1     1 0   0   0   0   0   0   02-to-4 decoder

3-to-8 decoder

in          out in                   out

called one-hot encoding

A0 Y3 Y2 Y1 Y0
A1 

one-hot encoding

realizes all minterms 

(explained below)

bit output 



n-to-2n binary decoders Decoders

A0

A1

Y0

Y1

Y2

Y3

2-to-4 decoder
Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-to-8 decoder

A0

A1

A2

only one of the Y-output bits is on 

(selected) for each input pattern



Decoders

A0

A1

Y0

Y1

Y2

Y3

2-to-4 decoder

1, 0, 1, 0

1, 1, 0, 0

0, 0, 0, 1

0, 0, 1, 0

0, 1, 0, 0

1, 0, 0, 0

0    0      0    0    0    1

0    1      0    0    1  0

1    0      0    1 0    0

1    1      1  0    0    0

A0 Y3 Y2 Y1 Y0
A1 



4-to-16 decoder

Decoders
0  0  0  0     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

0  0  0  1     0  0  0  0  0  0  0  0  0  0  0  0  0  0  1 0

0  0  1  0     0  0  0  0  0  0  0  0  0  0  0  0  0  1 0  0

0  0  1  1     0  0  0  0  0  0  0  0  0  0  0  0  1 0  0  0

0  1  0  0     0  0  0  0  0  0  0  0  0  0  0  1 0  0  0  0

0  1  0  1     0  0  0  0  0  0  0  0  0  0  1 0  0  0  0  0

0  1  1  0     0  0  0  0  0  0  0  0  0  1 0  0  0  0  0  0

0  1  1  1     0  0  0  0  0  0  0  0  1 0  0  0  0  0  0  0

1  0  0  0     0  0  0  0  0  0  0  1 0  0  0  0  0  0  0  0

1  0  0  1     0  0  0  0  0  0  1 0  0  0  0  0  0  0  0  0

1  0  1  0     0  0  0  0  0  1 0  0  0  0  0  0  0  0  0  0

1  0  1  1     0  0  0  0  1 0  0  0  0  0  0  0  0  0  0  0

1  1  0  0     0  0  0  1 0  0  0  0  0  0  0  0  0  0  0  0

1  1  0  1     0  0  1 0  0  0  0  0  0  0  0  0  0  0  0  0

1  1  1  0     0  1 0  0  0  0  0  0  0  0  0  0  0  0  0  0

1  1  1  1     1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

in                                 out



Table 6-3. Truth table for a 2-to-4 binary decoder with enable

don’t care

entries

Decoders

0
\\

1

2

3



Figure 6-15.   2-to-4 decoder with enable 

(a) Inputs and outputs

(b) Logic diagram

ʹ ʹ

Decoders



Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0
ʹ ʹ

A0

A1

EN

Y0

Y1

Y2

Y3

all possible minterms

2-to-4 decoder
Decoders

when EN=1

A1 A0 Y3 Y2 Y1 Y0  

0       0        0     0      0     1   

0       1        0     0      1     0

1       0        0     1      0     0

1       1        1     0      0     0



row    A2A1A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 minterms

0       0   0   0        0     0     0     0     0    0     0     1

1       0   0   1        0     0     0     0     0    0     1 0              

2       0   1   0        0     0     0     0     0    1 0     0              

3       0   1   1        0     0     0     0     1 0     0     0              

4       1   0   0        0     0     0     1 0    0     0     0              

5       1   0   1        0     0     1 0     0    0     0     0              

6       1   1   0        0     1 0     0     0    0     0     0              

7       1   1   1        1 0     0     0     0    0     0     0              

truth table of 3-to-8 decoder

Decoders

one-hot encoding

realizes all 8 minterms

MSB     LSB

one-hot encoding

A2ʹA1ʹA0ʹ

A2ʹA1ʹA0

A2ʹA1A0ʹ

A2ʹA1A0

A2A1ʹA0ʹ

A2A1ʹA0

A2A1A0ʹ

A2A1A0



Decoders

% generating the truth table

[A1,A0] = a2d(0:3,2);

Y3 =  A1 &  A0;

Y2 =  A1 & ~A0;

Y1 = ~A1 &  A0;

Y0 = ~A1 & ~A0;

[A1, A0, Y3, Y2, Y1, Y0] 

% 0   0   0   0   0   1

% 0   1   0   0   1   0

% 1   0   0   1   0   0

% 1   1   1   0   0   0

truth table of 2-to-4 decoder

Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0



Decoders

% generating the truth table

[A2,A1,A0] = a2d(0:7,3);

Y7 =  A2 &  A1 &  A0;

Y6 =  A2 &  A1 & ~A0;

Y5 =  A2 & ~A1 &  A0;

Y4 =  A2 & ~A1 & ~A0;

Y3 = ~A2 &  A1 &  A0;

Y2 = ~A2 &  A1 & ~A0;

Y1 = ~A2 & ~A1 &  A0;

Y0 = ~A2 & ~A1 & ~A0;

[A2,A1,A0,Y7,Y6,Y5,Y4,Y3,Y2,Y1,Y0] 

truth table of 3-to-8 decoder



3-to-8 decoder

Decoders

all possible A,B,C minterms

Realizing arbitrary combinational functions with decoders

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A0

A1

A2

LSB

MSB

A2ʹA1ʹA0ʹ

A2ʹA1ʹA0

A2ʹA1A0ʹ

A2ʹA1A0

A2A1ʹA0ʹ

A2A1ʹA0

A2A1A0ʹ

A2A1A0



Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

DecodersDecoders can implement arbitrary combinational functions, 

because the decoder outputs are all possible minterms,

similar to using ROMs or look-up-tables in FPGAs.

Example:

F = ABC(2,4,7) 

F = A2ʹA1A0ʹ + A2A1ʹA0ʹ + A2A1A0

F

A0

A1

A2

A2ʹA1A0ʹ

A2A1ʹA0ʹ

A2A1A0



Decoders

Figure 6-16. Logic symbol for the 74x138 3-to-8 decoder.

(a) conventional symbol

(b) default signal names associated with external pins



Decoders

Figure 6-17. Logic diagram for the 74x138 3-to-8 decoder

active-low

outputs



Decoders

Figure 6-17. Truth table of the 74x138 3-to-8 decoder

active-low outputs
MSB



Decoders

realizing larger decoders from 

smaller ones

Fig. 6-19. Building a 5-to-32 

decoder using five 3-to-8 

decoders



DecodersMore generally, it is not necessary to use all of the 

outputs of a decoder, or even to decode all input 

combinations (e.g., as in BCD-to-7 segment displays), or 

that the input combinations are in binary order.

Here is another example of a shaft-position decoder using Gray coding 

see Wakerly, Ch. 2 & Ch. 6



Encoders

Figure 6-24. Binary encoder.

(a) general structure

(b) 8-to-3 encoder

encoding operation

decoding operation

2n -to-n binary encoders

perform the opposite function of 

n-to-2n binary decoders

(block diagram to be explained below)



Y3 Y2 Y1 Y0 A1 A0  

0     0      0     1        0       0    

0     0      1     0        0       1

0     1      0     0        1       0

1     0      0     0        1       1

A1 A0 Y3 Y2 Y1 Y0  

0       0        0     0      0     1   

0       1        0     0      1     0

1       0        0     1      0     0

1       1        1     0      0     0

Y1 + Y3 = A1ʹA0 + A1A0 = (A1ʹ + A1) A0 = A0

Y2 + Y3 = A1A0ʹ + A1A0 = (A0ʹ + A0) A1 = A1

A0

A1

Y0

Y1

Y2

Y3

A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

2-to-4 decoder

Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0

A0 = Y1 + Y3

A1 = Y2 + Y3

Encoders

see p.81, for full truth-table and a problem with encoders



A0

A1

Y0

Y1

Y2

Y3

Encoders

A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

2-to-4 decoder

Y0 = A1ʹA0ʹ

Y1 = A1ʹA0

Y2 = A1A0ʹ

Y3 = A1A0

A0 = Y1 + Y3

A1 = Y2 + Y3

Y0

Y1

Y2

Y3

Y0

Y1

Y2

Y3

A0

A1

A0

A1

decoder

encoder



Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-to-8 decoder

A0

A1

A2

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

8-to-3 encoder

A0

A1

A2

Encoders

truth table

MSB

LSB

MSB

LSB



row    Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0

0        0     0     0     0     0    0     0     1 0     0     0          

1        0     0     0     0     0    0     1 0        0     0     1              

2        0     0     0     0     0    1 0     0        0     1     0              

3        0     0     0     0     1 0     0     0        0     1     1              

4        0     0     0     1 0    0     0     0        1     0     0              

5        0     0     1 0     0    0     0     0        1     0     1             

6        0     1 0     0     0    0     0     0        1     1     0              

7        1 0     0     0     0    0     0     0        1     1     1             

truth table of 8-to-3 encoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

8-to-3 encoder

A0

A1

A2

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

MSB

LSB



Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-to-8 decoder

A0

A1

A2

A2ʹA1ʹA0ʹ

A2ʹA1ʹA0

A2ʹA1A0ʹ

A2ʹA1A0

A2A1ʹA0ʹ

A2A1ʹA0

A2A1A0ʹ

A2A1A0

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

inverting

MSB

LSB



Encoders

Y1 + Y3 + Y5 + Y7 = A2ʹA1ʹA0 + A2ʹA1A0 + A2A1ʹA0 + A2A1A0

= A2ʹ(A1ʹ + A1)A0 + A2(A1ʹ + A1)A0

= A2ʹA0 + A2A0 = (A2ʹ + A2)A0 = A0

alternatively, we have,

Y1 + Y3 + Y5 + Y7 = A2ʹA1ʹA0 + A2ʹA1A0 + A2A1ʹA0 + A2A1A0

= (A2ʹA1ʹ + A2ʹA1 + A2A1ʹ + A2A1) A0

= (A2ʹ + A2)(A1ʹ + A1) A0 = A0

demonstration of simplification steps:

will be explored further in recitation exercises



Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A0

A1

A2

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

8-to-3 encoder

A0

A1

A2

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

Encoders

MSB

LSB



decimal-to-BCD encoder Encoders

inputs                 BCD code

n  Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A3 A2 A1 A0

0  0  0  0  0  0  0  0  0  0  1   0  0  0  0

1  0  0  0  0  0  0  0  0  1  0   0  0  0  1

2  0  0  0  0  0  0  0  1  0  0   0  0  1  0

3  0  0  0  0  0  0  1  0  0  0   0  0  1  1

4  0  0  0  0  0  1  0  0  0  0   0  1  0  0

5  0  0  0  0  1  0  0  0  0  0   0  1  0  1

6  0  0  0  1  0  0  0  0  0  0   0  1  1  0

7  0  0  1  0  0  0  0  0  0  0   0  1  1  1

8  0  1  0  0  0  0  0  0  0  0   1  0  0  0

9  1  0  0  0  0  0  0  0  0  0   1  0  0  1

one-hot encoding of the ten integers 0,1,…,9

see p.75, on how to generate such table with MATLAB



Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

A0

A1

A2

A3

A0 = Y1 + Y3 + Y5 + Y7 +  Y9

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

A3 = Y8 + Y9

Encodersdecimal-to-BCD encoder

see  p.75, for MATLAB code

and p.76, for gate-level implementation

and p.77, for chip-level realization

and p.41 & 78, for a complete system

MSB

LSB

0

1

2

3

4

5

6

7

8

9

one-hot encoding



Encoders

% decimal-to-BCD truth table on p.73

Y = fliplr(eye(10));

Y9 = Y(:,1);  Y8 = Y(:,2);  Y7 = Y(:,3);

Y6 = Y(:,4);  Y5 = Y(:,5);  Y4 = Y(:,6);

Y3 = Y(:,7);  Y2 = Y(:,8);  Y1 = Y(:,9);

Y0 = Y(:,10);

A3 = Y8 | Y9;

A2 = Y4 | Y5 | Y6 | Y7;

A1 = Y2 | Y3 | Y6 | Y7;

A0 = Y1 | Y3 | Y5 | Y7 | Y9;

[Y,A3,A2,A1,A0]           % print table

decimal-to-BCD encoder

A0 = Y1 + Y3 + Y5 + Y7 + Y9

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

A3 = Y8 + Y9



Encodersdecimal-to-BCD encoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

A0 = Y1 + Y3 + Y5 + Y7 +  Y9

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7

A3 = Y8 + Y9

will be explored further in recitation exercises



Encoders



BCD to seven-segment display encoder/decoder system

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

a 

b 

c 

d

e

f

g

a

b

c

d

e

f

g

0 

1 

2 

3

4

5

6

7

8

9

decimal-to-BCD BCD-to-7 segment

7-segment LED

encoder decoder

display

A

B 

C

D

A

B 

C

D

LED

signals

MSB

LSB

0   0 0 0 0   

3   0 0 1 1   

5   0 1 0 1   

7   0 1 1 1   

9   1 0 0 1   



Encodersthree-state buffers

Figure 7-1. Various three-state buffers 

(a,b) non-inverting 

(c,d) inverting

(a,c) active-high enable

(b,d) active-low enable

E  X    Y

0   0     Z

0   1     Z

1   0     0

1   1     1

high-impedance

state, 

with X effectively 

disconnected

from Y

E

X Y

truth table for (a)



Encodersthree-state buffers

Figure 7-2. Eight sources sharing a single three-state party line

normally, one cannot connect the outputs like that, however, here, 

only one of the outputs is active at a time, the others being 

disabled by going into their high-impedance state



A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

A0 = Y1 + Y3

A1 = Y2 + Y3

Y0

Y1

Y2

Y3

A0

A1

Y3 Y2 Y1 Y0 A1 A0

0  0  0  0  0  0

0  0  0  1  0  0

0  0  1  0  0  1

0  0  1  1  0  1

0  1  0  0  1  0

0  1  0  1  1  0

0  1  1  0  1  1

0  1  1  1  1  1

1  0  0  0  1  1

1  0  0  1  1  1

1  0  1  0  1  1

1  0  1  1  1  1

1  1  0  0  1  1

1  1  0  1  1  1

1  1  1  0  1  1

1  1  1  1  1  1

problem with encoders

when multiple inputs 

are asserted

Priority encoders



Y3 Y2 Y1 Y0 A1 A0  

0     0      0     1        0       0    

0     0      1     0        0       1

0     1      0     0        1       0

1     0      0     0        1       1

A0

A1

Y0

Y1

Y2

Y3

4-to-2 encoder

A0 = Y1 + Y3

A1 = Y2 + Y3

the problem can be resolved by making

the encoder inputs unique, i.e., mutually exclusive, 

so that none of the other entries of the full truth table can occur,

this can be accomplished by prioritizing the inputs and sending 

the prioritized signals as inputs to the encoder

Priority encoders



H3 = Y3

H2 = Y2 Y3ʹ                

H1 = Y1 Y2ʹ Y3ʹ

H0 = Y0 Y1ʹ Y2ʹ Y3ʹ

we assign highest priority to the input Y3, and 

then to Y2, Y1, Y0, and we construct the following 

high-priority signals, H3, H2, H1, H0, and then 

pass them to an ordinary 4-to-2 encoder to 

generate the encoded A1, A0 outputs

if Y3 is not ON, then Y2 has next priority

if neither Y3 nor Y2 are ON, then Y1 has next priority

and if none of Y3,Y2,Y1 are ON, then Y0 has next priority

Y0

Y1

Y2

Y3

H0

H1

H2

H3

A0 = H1 + H3

A1 = H2 + H3

Y-to-H

mapping

ordinary

4-to-2

encoder

Priority encoders



Y0

Y1

Y2

Y3

V

H0

H1

H2

H3

Y-to-H

mapping

ordinary

4-to-2

encoder

A0 = H1 + H3

A1 = H2 + H3

it is common also to define the “validation” signal

V = Y3 + Y2 + Y1 + Y0

that is asserted if any of the inputs is ON,

note that the Wakerly text uses active-low logic 

and uses the complement of V, called IDLE,

IDLE = Vʹ = Y3ʹ Y2ʹ Y1ʹ Y0ʹ 

Priority encoders



H3 = Y3

H2 = Y2 Y3ʹ                

H1 = Y1 Y2ʹ Y3ʹ

H0 = Y0 Y1ʹ Y2ʹ Y3ʹ

further simplifications

Y0

Y1

Y2

Y3

H0

H1

H2

H3

A0 = H1 + H3

A1 = H2 + H3

Y-to-H

mapping

ordinary

4-to-2

encoder

A0 = H1 + H3 = Y3 + Y1 Y2ʹ Y3ʹ = (Y3 + Y3ʹ) (Y3 + Y1 Y2ʹ ) = Y3 + Y1 Y2ʹ

A1 = H2 + H3 = Y3 + Y2 Y3ʹ = (Y3 + Y3ʹ ) (Y3 + Y2) = Y3 + Y2

using the distributive property,  A + BC = (A+B)(A+C)

Priority encoders



gate-level realization of a 4-to-2 priority encoder

Y0

Y1

Y2

Y3

V

A0 = Y3 + Y1 Y2ʹ

A1 = Y3 + Y2

we may verify that this works as expected by computing the 

full truth table of the Y-inputs, H-inputs, and A-outputs, shown 

on the next page, and computed with MATLAB on p.89

Priority encoders



Y3  Y2  Y1  Y0  H3  H2  H1  H0  A1  A0 V

0  0  0  0  0  0  0  0  0  0  0

0  0  0  1  0  0  0  1  0  0  1

0  0  1  0  0  0  1  0  0  1  1

0  0  1  1  0  0  1  0  0  1  1

0  1  0  0  0  1  0  0  1  0  1

0  1  0  1  0  1  0  0  1  0  1

0  1  1  0  0  1  0  0  1  0  1

0  1  1  1  0  1  0  0  1  0  1

1  0  0  0  1  0  0  0  1  1  1

1  0  0  1  1  0  0  0  1  1  1

1  0  1  0  1  0  0  0  1  1  1

1  0  1  1  1  0  0  0  1  1  1

1  1  0  0  1  0  0  0  1  1  1

1  1  0  1  1  0  0  0  1  1  1

1  1  1  0  1  0  0  0  1  1  1

1  1  1  1  1  0  0  0  1  1  1

H-outputs 

are exclusive, and 

correspond to a plain 

4-to-2 binary encoder

4-to-2 encoder

H3 H2 H1 H0  A1 A0  

0  0  0  1  0  0    

0  0  1  0  0  1

0  1  0  0  1  0

1  0  0  0  1  1

H0
H1
H2
H3

A0
A1

Priority encoders

ʹ                



Y3  Y2  Y1  Y0  H3  H2  H1  H0  A1  A0 V

0  0  0  0  0  0  0  0  0  0  0

0  0  0  1  0  0  0  1  0  0  1

0  0  1  x  0  0  1  0  0  1  1

0  1  x  x  0  1  0  0  1  0  1

1  x  x x  1  0  0  0  1  1  1

H-outputs 

are exclusive, and 

correspond to a plain 

4-to-2 binary encoder

4-to-2 encoder

H3 H2 H1 H0  A1 A0  

0  0  0  1  0  0    

0  0  1  0  0  1

0  1  0  0  1  0

1  0  0  0  1  1

H0
H1
H2
H3

A0
A1

compressed truth table

if Y3 is ON, then, A1A0 = 11, regardless of the 

values of Y2 Y1 Y0

if Y2 is ON, but Y3 is OFF, then, A1A0 = 10, 

regardless of the values of Y1 Y0

if Y1 is ON, but Y2  and Y3 are OFF, then, 

A1A0 = 01, regardless of the values of  Y0

if onlyY0 is ON, then, A1A0 = 00

Priority encoders



% 4-to-2 priority encoder truth table

[Y3,Y2,Y1,Y0] = a2d(0:15, 4);        % inputs

H3 = Y3;                             % intermediate

H2 = Y2 & (~Y3);                     % inputs to

H1 = Y1 & (~Y2) & (~Y3);             % plain 4-to-2

H0 = Y0 & (~Y1) & (~Y2) & (~Y3);     % binary encoder

A1 = H2 | H3;                        % outputs

A0 = H1 | H3;

% A1 = Y2 | Y3;                      % alternative

% A0 = (Y1 & (~Y2)) | Y3;            % calculation

V = Y0 | Y1 | Y2 | Y3;               % valid output

[Y3,Y2,Y1,Y0,H3,H2,H1,H0,A1,A0,V]    % truth table

Priority encoders

ʹ                



the construction of higher order priority encoders is straightforward. 

For example, in the 8-to-3 case, the high-priority signals are constructed 

as follows, assigning higher to lower priority in the order of, 

Y7, Y6, Y5, Y4, Y3, Y2, Y1, Y0, 

H7 = Y7

H6 = Y6 Y7ʹ 

H5 = Y5 Y6ʹ Y7ʹ 

H4 = Y4 Y5ʹ Y6ʹ Y7ʹ 

H3 = Y3 Y4ʹ Y5ʹ Y6ʹ Y7ʹ 

H2 = Y2 Y3ʹ Y4ʹ Y5ʹ Y6ʹ Y7ʹ 

H1 = Y1 Y2ʹ Y3ʹ Y4ʹ Y5ʹ Y6ʹ Y7ʹ 

H0 = Y0 Y1ʹ Y2ʹ Y3ʹ Y4ʹ Y5ʹ Y6ʹ Y7ʹ

V =  Y0 + Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7

8-to-3 priority encoder
standard 8-to-3 encoder

from p.72

A0 = Y1 + Y3 + Y5 + Y7

A1 = Y2 + Y3 + Y6 + Y7

A2 = Y4 + Y5 + Y6 + Y7



Priority encoders
8-to-3 priority encoder

H0

H1

H2

H3

H4

H5

H6

H7

A0 = H1 + H3 + H5 + H7

A1 = H2 + H3 + H6 + H7

A2 = H4 + H5 + H6 + H7

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y-to-H

mapping

ordinary

8-to-3

encoder



Priority encoders

74148 chip family

active-low



E

Multiplexers

Y = sʹ X0 + s X1

s      Y

0     X0

1     X1

X0

X1

s

0

1

simplified truth table
alternative symbol

2-to-1 multiplexer

Y 

X0

X1

0

1

s

additional “enable” input

0

1



Multiplexers

X0 X1

Y

s

2-to-1 multiplexer

gate-level realization

Y = sʹ X0 + s X1



Multiplexers

4-to-1 multiplexer

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

s1 s0 Y

0    0      X0

0    1      X1

1    0      X2

1    1      X3

simplified truth table

alternative symbol

X0

X1

X2

X3

s1 s0

Y

0 0    

0 1

1 0

1 1

can also have an enable input



Multiplexers

s0

s1

Y

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

X0 X1 X2 X3

4-to-1 multiplexer

gate-level realization



A0

A1

Y0

Y1

Y2

Y3

2-to-4 decoder

s0

s1

X0

X1

X2

X3

Y

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

Multiplexersmultiplexer realization with decoders

s1ʹs0ʹ

s1ʹs0

s1s0ʹ

s1s0

decoder generates all required minterms



s0

X0

X1

X2

X3

Y

Y = s1ʹs0ʹ X0 + s1ʹs0 X1 + s1s0ʹ X2 + s1s0 X3

Multiplexersrealizing larger multiplexers from smaller ones

s0

0

1

0

1

0

1

s1

2-to-1 multiplexers

X0

X1

X2

X3

s1 s0

Y

0 0    

0 1

1 0

1 1

4-to-1 multiplexer

s1 s0 Y

0    0      X0

0    1      X1

1    0      X2

1    1      X3

discussed further in recitations



Multiplexers

8-to-1 multiplexer

Y

X0

X1

X2

X3

X4

X5

X6

X7

s2 s1 s0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1 

1 1 0

1 1 1

selector signals

Y = s2ʹs1ʹs0ʹ X0 + s2ʹs1ʹs0X1 + s2ʹs1s0ʹ X2 + s2ʹs1s0X3

+ s2s1ʹs0ʹ X4 + s2s1ʹs0X5 + s2s1s0ʹ X6 + s2s1s0X7



Y

Y = s2ʹ s1ʹ s0 + s2ʹ s1 s0ʹ + s2 s1ʹ s0ʹ + s2 s1 s0ʹ

realizing combinational functions with multiplexers

X0 = 0

X1 = 1

X2 = 1

X3 = 0

X4 = 1

X5 = 0

X6 = 1

X7 = 0

s2 s1 s0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1 

1 1 0

1 1 1

s2  s1 s0 Y

0   0   0     0

0   0   1     1

0   1   0     1

0   1   1     0

1   0   0     1

1   0   1     0

1   1   0     1

1   1   1     0

Multiplexers

apply the truth table values to the inputs

function inputs
desired outputs



Y

s0

s1

X0 = s1ʹs0ʹ Y 

X1 = s1ʹs0 Y 

X2 = s1s0ʹ Y 

X3 = s1s0 Y 

Demultiplexers

s1 s0 X0 X1 X2 X3  

0    0     Y     0      0     0   

0    1      0    Y      0     0

1    0      0     0      Y    0

1    1      0     0      0     Y



Demultiplexers

s1 s0 X0 X1 X2 X3  

0    0     Y     0      0     0   

0    1      0    Y      0     0

1    0      0     0      Y    0

1    1      0     0      0     Y

demultiplexer truth table

alternative symbol

X0

X1

X2

X3

Y

can also have an “enable” input

0 0    

0 1

1 0

1 1

s1 s0



X0 = s1ʹs0ʹ Y 

X1 = s1ʹs0 Y 

X2 = s1s0ʹ Y 

X3 = s1s0 Y 

Y

s0

s1

2-to-4 decoder

A0

A1

Y0

Y1

Y2

Y3

Demultiplexersdemultiplexer realization with decoders

E

s1ʹs0ʹ

s1ʹs0

s1s0ʹ

s1s0


